共查询到20条相似文献,搜索用时 0 毫秒
1.
Background
White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation. 相似文献2.
The cellulose synthase superfamily 总被引:30,自引:0,他引:30
3.
4.
Background
Cellulose is an important constituent of plant cell walls in a biological context, and is also a material commonly utilized by mankind in the pulp and paper, timber, textile and biofuel industries. The biosynthesis of cellulose in higher plants is a function of the cellulose synthase complex (CSC). The CSC, a large transmembrane complex containing multiple cellulose synthase proteins, is believed to be assembled in the Golgi apparatus, but is thought only to synthesize cellulose when it is localized at the plasma membrane, where CSCs synthesize and extrude cellulose directly into the plant cell wall. Therefore, the delivery and endocytosis of CSCs to and from the plasma membrane are important aspects for the regulation of cellulose biosynthesis.Scope
Recent progress in the visualization of CSC dynamics in living plant cells has begun to reveal some of the routes and factors involved in CSC trafficking. This review highlights the most recent major findings related to CSC trafficking, provides novel perspectives on how CSC trafficking can influence the cell wall, and proposes potential avenues for future exploration. 相似文献5.
Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants. 总被引:7,自引:1,他引:7
下载免费PDF全文

Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants. 相似文献
6.
The presence of glutamate synthase in the green algae var. has been demonstrated using a whole cell assay as well as cell free extracts. The assay is complicated by the presence of glutamine (amino): α-oxoglutarate transaminase, but this enzyme can be inhibited by amino oxyacetate. The rates of glutamate synthase activity are sufficient to account for the known rates of nitrate assimilation to occur via the glutamine synthetase/glutamate synthase pathway. 相似文献
7.
8.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions. 相似文献
9.
Carbonic anhydrases in plants and algae 总被引:12,自引:1,他引:12
Carbonic anhydrases catalyse the reversible hydration of CO2, increasing the interconversion between CO2 and HCO3− + H+ in living organisms. The three evolutionarily unrelated families of carbonic anhydrases are designated α-, β-and γ-CA. Animals have only the α-carbonic anhydrase type of carbonic anhydrase, but they contain multiple isoforms of this carbonic anhydrase. In contrast, higher plants, algae and cyanobacteria may contain members of all three CA families. Analysis of the Arabidopsis database reveals at least 14 genes potentially encoding carbonic anhydrases. The database also contains expressed sequence tags (ESTs) with homology to most of these genes. Clearly the number of carbonic anhydrases in plants is much greater than previously thought. Chlamydomonas, a unicellular green alga, is not far behind with five carbonic anhydrases already identified and another in the EST database. In algae, carbonic anhydrases have been found in the mitochondria, the chloroplast thylakoid, the cytoplasm and the periplasmic space. In C3 dicots, only two carbonic anhydrases have been localized, one to the chloroplast stroma and one to the cytoplasm. A challenge for plant scientists is to identify the number, location and physiological roles of the carbonic anhydrases. 相似文献
10.
Fully sequenced prokaryotic genomes ofEscherichia coli, Haemophilus influenzae andMethanococcus janaschii were subjected .to genome analysis for nucleotide interactions. The analysis was restricted to inter-nucleotide relations like two nucleotides in a dinucleotide, three nucleotides in a codon and two codons in a dicon. This relational analysis was carried out in C language and was compiled on a C++ compiler. The relational analysis showed a preferential dinucleotide frequency (the observed frequencies of AA and TT were higher than the expected frequency and the observed frequencies of CC and GG). From codon frequency distribution analysis, sub-codonic elements have been noticed, exerting that the first one or first two nucleotide may reasonably determine the next nucleotide(s) in a codon. The analysis further reveals the existence of short-range randomness or chaotic behaviour in prokaryotic genomes, which might be a forerunner for the origin of introns in eukaryotes, besides being involved in a regulatory role. 相似文献
11.
12.
Urochordates are the only animals that produce cellulose, a polysaccharide existing primarily in the extracellular matrices of plant, algal, and bacterial cells. Here we report a Ciona intestinalis homolog of cellulose synthase, which is the core catalytic subunit of multi-enzyme complexes where cellulose biosynthesis occurs. The Ciona cellulose synthase gene, Ci-CesA, is a fusion of a cellulose synthase domain and a cellulase (cellulose-hydrolyzing enzyme) domain. Both the domains have no animal homologs in public databases. Exploiting this fusion of atypical genes, we provided evidence of a likely lateral transfer of a bacterial cellulose synthase gene into the urochordate lineage. According to fossil records, this likely lateral acquisition of the cellulose synthase gene may have occurred in the last common ancestor of extant urochordates more than 530 million years ago. Whole-mount in situ hybridization analysis revealed the expression of Ci-CesA in C. intestinalis embryos, and the expression pattern of Ci-CesA was spatiotemporally consistent with observed cellulose synthesis in vivo. We propose here that urochordates may use a laterally acquired homologous gene for an analogous process of cellulose synthesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at
Edited by D. Tautz 相似文献
13.
14.
Cattolico RA 《Trends in ecology & evolution》1986,1(3):64-67
Eukaryotes contain a chimeric assembly of genomes, each localized in a specialized subcellular compartment. The successful survival of an organism requires that these sequestered genomes be viewed as dependent variables in a coevolutionary complex. This discussion focuses on chloroplast evolution. A selected review of information available on chloroplast diversity is presented, followed by an analysis of the genetic modifications which may have occurred in the conversion of a free-living ancestral photosynthetic prokaryote into an organelle that has an obligately dependent and highly efficient interplay with the nuclear genome. 相似文献
15.
Christine Fuell Katherine A. Elliott Colin C. Hanfrey Marina Franceschetti Anthony J. Michael 《Plant Physiology and Biochemistry》2010,48(7):513-520
Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage. 相似文献
16.
17.
18.
19.