首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotinylation is a recent addition to the list of reported posttranslational modifications made to histones. Holocarboxylase synthetase (HCS) and biotinidase have been implicated as biotinylating enzymes. However, the details of the mechanism and the regulation of biotin transfer on and off histones remains unclear. Here we report that in a cell culture system low biotin availability reduces biotinylation of carboxylases, yet apparent biotinylation of histones is unaffected. This is despite biotin depletion having detrimental effects on cell viability and proliferation. Further analysis of the widely used method for detecting biotin on histones, streptavidin blotting, revealed that streptavidin interacts with histones independently of biotin binding. Preincubation of streptavidin with free biotin reduced binding to biotinylated carboxylases but did not block binding to histones. To investigate biotinylation of histones using an alternative detection method independent of streptavidin, incorporation of 14C biotin into biotinylated proteins was analyzed. Radiolabeled biotin was readily detectable on carboxylases but not on histones, implying very low levels of biotin in the nucleus attached to histone proteins (< 0.03% biotinylation). In conclusion, we would caution against the use of streptavidin for investigating histone biotinylation.  相似文献   

2.
Biotinylated antibodies/antigens are currently used in many immunoassay formats in clinical settings for diversified analytes and biomarkers to offer high detection selectivity and sensitivity. Biotin cannot be synthesized by mammals and must be taken as an essential supplement. Normal intake of biotin from various foods and milk causes no effect on the streptavidin/biotin-based immunoassays. However, overconsumption of biotin (daily doses 100–300 mg) poses a significant problem for immunoassays using the biotin-strept(avidin) pair. Biotin interferences are noted in immunoassays of thyroid markers, drugs, hormones, cancer markers, the biomarker for cardiac function (β–human chorionic gonadotropin), etc. The biotin level required for serious interference in test results varies significantly from test to test and cannot easily be predicted. Immunoassay manufacturers with technologies based on strept(avidin)-biotin binding must investigate the interference from biotin (up to at least 1200 ng/mL or 4.9 μM of biotin) in various formats. There is no concrete solution to circumvent the biotin interference encountered in blood samples, short of biotin removal. Considering the short half-life of biotin in the human body, patients must stop taking biotin supplements for >48 h before the test. However, this scenario is not considered for patients in emergency situations or those with biotinidase deficiency, mitochondrial metabolic disorders or multiple sclerosis. Apparently, a rapid analytical procedure for biotin is urgently needed to quantify for its interference in immunoassays using strep(avidin)-biotin chemistry. To date, there is no quick and reliable procedure for the detection of biotin at below nanomolar levels in blood and biological samples.Traditional lab-based techniques including HPLC/MS-MS cannot process an enormous number of public samples. Biosensors with high detection sensitivity, miniaturization, low cost, and multiplexing have the potential to address this issue.  相似文献   

3.
A non-covalent method of attaching antibodies to liposomes   总被引:1,自引:0,他引:1  
A novel non-covalent method of attaching antibodies to liposomes which exploits the high affinity of streptavidin for biotin, is described. The two-step coupling protocol involves the initial attachment of streptavidin to liposomes containing biotin PE, followed by the coupling of biotinated antibodies to streptavidin-liposomes. The association of streptavidin with liposomes containing biotinated PE is rapid (less than 5 min), resulting in a maximum association of 40 molecules of streptavidin per 100 nm vesicle. In the presence of equimolar cholesterol, the amount of streptavidin bound is twice that observed when biotin PE/egg PC liposomes are used. Irrespective of the mole ratio of biotin to antibody (e.g. for 1-6 biotins per antibody), or the molar ratio of antibody to streptavidin in the second incubation step, equimolar amounts of antibody bind to streptavidin. It is shown that anti-rat-erythrocyte IgG or F(ab')2 complexed to liposomes via the streptavidin linker bind specifically to rat erythrocytes but not to human erythrocytes. This coupling protocol can be readily extended to other biotinated antibodies.  相似文献   

4.
Thermosensitive polymer nanospheres based on N,N-diethylacrylamide and 2-hydroxyethyl methacrylate (HEMA) have been prepared, characterized, and conjugated with biotin. The thermosensitivity of poly(N,N-diethylacrylamide) was enhanced by the incorporation of HEMA up to about 40 mol %. Atomic force microscopic images show that these particles can be closely packed even without the surface charges as in the latex particles. Biotinylation reduces the thermosensitivity of the copolymer nanospheres. The biotinylated hydrogel nanospheres showed a reduction in size upon binding with streptavidin, indicating the formation of a less hydrophilic conjugate. No aggregation of the biotinylated particles due to the cross-linking effect of streptavidin was observed. This size change could be reversed by the addition of free biotin to the system. The interaction is specific, and no such changes were observed when streptavidin was replaced by bovine serum albumin.  相似文献   

5.
In this work, two methods have been compared to produce enzymatic voltammetric immunosensors for the determination of Mycobacterium tuberculosis antigens (Ag360 and Ag231), using a pre-oxidised screen-printed carbon electrode (SPCE) as a signal transduction element. The enzyme alkaline phosphatase (AP) was used in combination with the substrate 3-indoxyl phosphate (3-IP). In one design, the immune complexes between M. tuberculosis antigens and monoclonal antibodies against M. tuberculosis were formed out of the electrode surface. Then, the immune complexes were captured by biotinylated rabbit anti-M. tuberculosis antibodies, immobilised on the streptavidin modified SPCEs through the streptavidin:biotin reaction. Finally, an alkaline phosphatase (AP) labelled rabbit IgG anti-mouse immunoglobulin G was used as a detector antibody. In the other design, the M. tuberculosis antigens were captured by monoclonal antibodies against M. tuberculosis, which were immobilised on the electrode surface through the reaction with rabbit IgG passively adsorbed on the SPCEs. The biotinylated rabbit anti-M. tuberculosis antibodies were used with an alkaline phosphatase labelled streptavidin as detector antibodies. The best results for M. tuberculosis antigen determination were obtained using the immunosensor on the streptavidin modified SPCEs and the immune complexes between antigen Ag231 and monoclonal antibodies MabF184-3, with a detection limit of 1.0 ng/ml. The immunosensor was also applied to Ag231 spiked proteic matrices.  相似文献   

6.
The high affinity of biotin for streptavidin has made this pair of molecules very useful for in vivo applications. To optimize reagents for one potential in vivo application, antibody-based pretargeting of cancer, we have prepared a number of new biotin and streptavidin derivatives. The derivatives developed include new radiolabeled biotin reagents, new protein biotinylation reagents, and new biotin multimers for cross-linking and/or polymerization of streptavidin. We have also modified streptavidin by site-directed mutation and chemical modification to improve its in vivo characteristics, and have developed new reagents for cross-linking antibody fragments with streptavidin. A brief overview of these new reagents is provided.  相似文献   

7.
We have developed a sandwich enzyme-linked immunosorbent assay for serotyping dengue viruses. In this assay, we used antibody from dengue hemorrhagic fever patients for detection of flavivirus common antigens to confirm virus isolation in C6/36 cells and that from hyperimmune mouse ascitic fluids for serotyping. The anti-dengue antibody was immobilized on microplate wells for capturing of dengue antigens, which were then sandwiched with the same biotinylated antibody. Then the biotin in the solid phase was detected with peroxidase-conjugated streptavidin. We found that all the dengue strains tested were unequivocally identified by this method.  相似文献   

8.
A competitive binding assay for biotin, biocytin, and desthiobiotin utilizing a genetically engineered enzyme-ligand conjugate is described herein. This assay is unique in that the enzyme-ligand conjugate consists of the streptavidin binding peptide Strep-tag II, which mimics the binding of biotin to streptavidin, rather than biotin itself. This allows for the construction of a well-defined, oligosubstituted enzyme-ligand conjugate for which the site of attachment of the ligand on the enzyme is known precisely. The assay has detection limits of 5 x 10(-8) M for biotin, 1 x 10(-7) M for biocytin, and 2 x 10(-6) M for desthiobiotin, and it serves as a model system in that it demonstrates the feasibility of using enzyme-ligand conjugates in which a peptide mimic of the analyte ligand is genetically fused to the enzyme. This avoids the problems associated with covalent attachment of the ligand to the enzyme, such as multiple substitution of the ligand and variability of the site of attachment. To our knowledge, this is the first example of using an enzyme-peptide mimic conjugate to detect a nonpeptide analyte.  相似文献   

9.
Inconsistent results obtained with published methods for the elution of antibodies from tissue sections prompted the assessment of both old and new methods in combination with monoclonal rabbit antibodies of known, increased affinity (above 1×10-9 KD). We tested an acidic (pH 2) glycine buffer, a 6 M urea hot buffer and a 2-Mercaptoethanol, SDS buffer (2-ME/SDS). Some antibodies were not removed by the glycine pH 2 or 6 M urea hot buffers, indicating that antibodies survive much harsher conditions than previously believed. We found that the elution is dependent upon the antibody affinity and is reduced by species-specific crosslinking via a dimeric or Fab fragments of a secondary antibody. The high affinity bond of exogenous streptavidin with the endogenous biotin can be removed by 6 M urea but not by the other buffers. 2-ME/SDS buffer is superior to glycine pH 2 and 6 M urea hot elution buffers for all antibodies because of its irreversible effect on the structure of the antibodies. It also has a mild retrieving effect on some antigens present on routinely treated sections and no detrimental effect on the immunoreactivity of the tissue. Therefore, 2-ME/SDS buffer is the method of choice to perform multiple rounds of immunostaining on a single routine section.  相似文献   

10.
A rapid and sensitive time‐resolved fluoroimmunoassay (TR–FIA) based on the biotin–streptavidin amplification system was developed for the determination of diethylstilbestrol (DES). Europium‐labelled streptavidin derivatives combined with europium and anhydride of diethylene triamine penta‐acetic acid were used to label streptavidin; biotin was coupled with goat anti‐rabbit IgG to form a biotin–goat anti‐rabbit IgG bridge between streptavidin–europium and the anti‐DES antibody in the immunoassay. The DES assay was carried out by measuring the fluorescence of Eu3+–SA at 615 nm. The presented method produced a wide linear range, 0.001–1000.0 ng/mL, and a detection limit up to 0.81 pg/mL for DES. The method was applied to determine DES in serum samples, with recoveries of 97.4–107.8% and RSD 1.32–4.04%. The assay results by the present method showed that biotin–streptavidin amplified TR–FIA for DES detection; it may offer high sensitivity and promising alternative special methods in biological samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Being different from anti-phosphotyrosine antibodies, anti-phosphoserine- or anti-phosphothreonine-specific antibodies with high affinity for the detection of serine/threonine kinase substrates are not readily available. Therefore, chemical modification methods were developed for the detection of phosphoserine or threonine in the screening of protein kinase substrates based on β-elimination and Michael addition. We have developed a biotin-based detection probe for identification of the phosphorylated serine or threonine residue. A biotin derivative induced a color reaction using alkaline phosphate-conjugated streptavidin that amplified the signal. It was effective for the detection and separation of the target peptide on the resin. The detection probe was successfully used in identifying PKA substrates from peptide libraries on resin beads. The peptide library was prepared as a ladder-type, such that the active peptides on the colored resin beads were readily sequenced with the truncated peptide fragments by MALDI-TOF/MS analysis after releasing the peptides from the resin bead through photolysis.  相似文献   

12.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

13.
Biotinylation is widely used in DNA, RNA and protein probing assays as this molecule has generally no impact on the biological activity of its substrate. During the streptavidin‐based detection of glycoproteins in Lactobacillus rhamnosus GG with biotinylated lectin probes, a strong positive band of approximately 125 kDa was observed, present in different cellular fractions. This potential glycoprotein reacted heavily with concanavalin A (ConA), a lectin that specifically binds glucose and mannose residues. Surprisingly, this protein of 125 kDa could not be purified using a ConA affinity column. Edman degradation of the protein, isolated via cation and anion exchange chromatography, lead to the identification of the band as pyruvate carboxylase, an enzyme of 125 kDa that binds biotin as a cofactor. Detection using only the streptavidin conjugate resulted in more false positive signals of proteins, also in extracellular fractions, indicating biotin‐associated proteins. Indeed, biotin is a known cofactor of numerous carboxylases. The potential occurence of false positive bands with biotinylated protein probes should thus be considered when using streptavidin‐based detection, e.g. by developing a blot using only the streptavidin conjugate. To circumvent these false positives, alternative approaches like detection based on digoxigenin labelling can also be used.  相似文献   

14.
We describe the cooperativity in the biotin binding of streptavidin. We have developed an electrophoretic method which can separate streptavidin molecules with bound biotin from those without biotin. In 6 M urea, the electrophoretic mobility of streptavidin in polyacrylamide gels becomes significantly faster upon biotin binding. When streptavidin was titrated with biotin, only two major bands were observed on the gel, consisting of streptavidin molecules without bound biotin and those saturated with biotin. The change in mobility is due partly to the negative charge of the bound biotin, but it must reflect conformational changes of the protein molecule associated with biotin binding. Gel filtration chromatography showed that the streptavidin molecule dissociates into two subunit dimers in the presence of 6 M urea. These results suggest that the biotin binding by the streptavidin subunit dimer is cooperative and that some communication must exist between the two subunits.  相似文献   

15.
To detect protein-ligand interaction a gramicidin-based sensor was developed. Biotin was tagged to the C-terminus of gramicidin (Gram-bio 1). The biotin-moiety, which faces the electrolyte, gave little effect on single-channel conductance. Streptavidin added to the electrolyte was detected by Gram-bio 1 through the monitoring channel current using the planar bilayer system. The suppression of macroscopic currents and the acceleration of their decaying time course were observed in a concentration dependent manner. In the single-channel level, however, no significant effect on the single-channel conductance and the open dwell time was observed upon addition of streptavidin. Therefore, streptavidin neither blocked the open channel nor changed the stability of the conducting dimer. Insertion of a linker between gramicidin and biotin did not change the streptavidin-sensitivity of the current reduction. We conclude that the binding of streptavidin to the Gram-bio 1 shifted the distribution of the complex from the membrane to the electrolyte and, thus, reduced the formation of conducting dimer of Gram-bio 1 in the membrane. Interaction of biotin with an anti-biotin antibody was also observed using this system, indicating that this system is applicable for the detection of protein-ligand interaction having a binding constant of approximately 10(8-9) M(-1) or more. Both the adamantane-tagged gramicidin for detection of beta-cyclodextrin and the Strep Tag-II-tagged gramicidin for detection of streptavidin (binding constant: approximately 10(5) M(-1) or less) failed to respond. Thus, high-affinity ligands upon tagging to gramicidin render the gramicidin-based sensor able to execute as a real-time monitoring system for protein-ligand interaction.  相似文献   

16.
Streptavidin provides an effective receptor for biotinylated tumoricidal molecules, including radionuclides, when conjugated to an antitumor antibody and administered systemically. Ideally, one would like to administer this bacterial protein to patients repeatedly, so as to maximize the antitumor effect without eliciting an immune response. Therefore, we attempted to reduce the antigenicity of streptavidin by mutating surface residues capable of forming high energy ionic or hydrophobic interactions. A crystallographic image of streptavidin was examined to identify residues with solvent-exposed side chains and residues critical to streptavidin's structure or function, and to define loops. Mutations were incorporated cumulatively into the protein sequence. Mutants were screened for tetramer formation, biotin dissociation, and reduced immunoreactivity with pooled patient sera. Patient antisera recognized one minor continuous epitope with binding locus at residue E101 and one major discontinuous epitope involving amino acid residues E51 and Y83. Mutation of residues E51, Y83, R53, and E116 reduced reactivity with patient sera to <10% that of streptavidin, but these mutations were no less antigenic in rabbits. Mutant 37, with 10 amino acid substitutions, was only 20% as antigenic as streptavidin. Rabbits immunized with either streptavidin or mutant 37 failed to recognize the alternative antigen. Biotin dissociated from mutant 37 four to five times faster than from streptavidin. Residues were identified with previously undescribed impact on biotin binding and protein folding. Thus, substitution of charged, aromatic, or large hydrophobic residues on the surface of streptavidin with smaller neutral residues reduced the molecule's ability to elicit an immune response in rabbits.  相似文献   

17.
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [3H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.  相似文献   

18.
A colorimetric competitive inhibition assay for avidin, streptavidin and biotin was developed. The method for avidin or streptavidin was based on the competitive binding between avidin or streptavidin and a streptavidin-enzyme conjugate for biotinylated dextrin immobilized on the surface of a microtitre plate. For biotin quantitation the competition is between free biotin and the immobilized biotin for the streptavidin-enzyme conjugate. The limits of detection which was determined as the concentration of competitor required to give 90% of maximal absorbency (100% inhibition) was approximately 20 ng/100 microl per assay for avidin and streptavidin and 0.4 pg/100 microl per assay for biotin. The methods are simple, rapid, highly sensitive and adaptable to high throughput analysis.  相似文献   

19.
Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3–4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4×10−14 M to 4.45×10−10 M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for various blots are possible.  相似文献   

20.
To find a suitable ligand from a complex antigen system is still a mission to be accomplished. Here we have explored a novel “library against proteome” panning strategy for ligand screening and antigen purification from a complex system using phage-displayed antibody technology. Human plasma proteome was targeted for phage library panning. During the process, the panning was carried out in solution, using a biotin/streptavidin beads separation system, for three rounds. Nine monoclonal phages, bound tightly to a number of unknown plasma proteins, were selected from the last round, six of which were directly employed as cross-linked matrices to purify their corresponding antigens from the plasma. The proteins isolated by G5 and E1 matrices were identified as amyloid protein and apolipoprotein A-I precursor, respectively. The results demonstrated that it was feasible to simultaneously obtain a number of ligand phages for various antigens, including low abundant proteins in a non-comparative proteome-wide system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号