首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.

Background

Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was initially identified in prostate cancer (PCa) tissue, particularly in the prostatic stromal fibroblasts, of patients homozygous for the RNASEL R462Q mutation. A subsequent study reported XMRV antigens in malignant prostatic epithelium and association of XMRV infection with PCa, especially higher-grade tumors, independently of the RNASEL polymorphism. Further studies showed high prevalence of XMRV or related MLV sequences in chronic fatigue syndrome patients (CFS), while others found no, or low, prevalence of XMRV in a variety of diseases including PCa or CFS. Thus, the etiological link between XMRV and human disease remains elusive. To address the association between XMRV infection and PCa, we have tested prostate tissues and human sera for the presence of viral DNA, viral antigens and anti-XMRV antibodies.

Results

Real-time PCR analysis of 110 PCa (Gleason scores >4) and 40 benign and normal prostate tissues identified six positive samples (5 PCa and 1 non-PCa). No statistical link was observed between the presence of proviral DNA and PCa, PCa grades, and the RNASEL R462Q mutation. The amplified viral sequences were distantly related to XMRV, but nearly identical to endogenous MLV sequences in mice. The PCR positive samples were also positive for mouse mitochondrial DNA by nested PCR, suggesting contamination of the samples with mouse DNA. Immuno-histochemistry (IHC) with an anti-XMRV antibody, but not an anti-MLV antibody that recognizes XMRV, sporadically identified antigen-positive cells in prostatic epithelium, irrespectively of the status of viral DNA detection. No serum (159 PCa and 201 age-matched controls) showed strong neutralization of XMRV infection at 1:10 dilution.

Conclusion

The lack of XMRV sequences or strong anti-XMRV neutralizing antibodies indicates no or very low prevalence of XMRV in our cohorts. We conclude that real-time PCR- and IHC-positive samples were due to laboratory contamination and non-specific immune reactions, respectively.  相似文献   

2.

Background

In October 2009 it was reported that 68 of 101 patients with chronic fatigue syndrome (CFS) in the US were infected with a novel gamma retrovirus, xenotropic murine leukaemia virus-related virus (XMRV), a virus previously linked to prostate cancer. This finding, if confirmed, would have a profound effect on the understanding and treatment of an incapacitating disease affecting millions worldwide. We have investigated CFS sufferers in the UK to determine if they are carriers of XMRV.

Methodology

Patients in our CFS cohort had undergone medical screening to exclude detectable organic illness and met the CDC criteria for CFS. DNA extracted from blood samples of 186 CFS patients were screened for XMRV provirus and for the closely related murine leukaemia virus by nested PCR using specific oligonucleotide primers. To control for the integrity of the DNA, the cellular beta-globin gene was amplified. Negative controls (water) and a positive control (XMRV infectious molecular clone DNA) were included. While the beta-globin gene was amplified in all 186 samples, neither XMRV nor MLV sequences were detected.

Conclusion

XMRV or MLV sequences were not amplified from DNA originating from CFS patients in the UK. Although we found no evidence that XMRV is associated with CFS in the UK, this may be a result of population differences between North America and Europe regarding the general prevalence of XMRV infection, and might also explain the fact that two US groups found XMRV in prostate cancer tissue, while two European studies did not.  相似文献   

3.
The human retrovirus XMRV (xenotropic murine leukemia virus-related virus) is associated with prostate cancer, but a causal relationship has not been established. Here, we have used cultured fibroblast and epithelial cell lines to test the hypothesis that XMRV might have direct transforming activity but found only rare transformation events, suggestive of indirect transformation, even when the target cells expressed the human Xpr1 cell entry receptor for XMRV. Characterization of cells from three transformed foci showed that all were infected with and produced XMRV, and one produced a highly active transforming virus, presumably generated by recombination between XMRV and host cell nucleic acids. Given the sequence similarity of XMRV to mink cell focus-forming (MCF) viruses and the enhanced leukemogenic activity of the latter, we tested XMRV for related MCF-like cytopathic activities in cultured mink cells but found none. These results indicate that XMRV has no direct transforming activity but can activate endogenous oncogenes, resulting in cell transformation. As part of these experiments, we show that XMRV can infect and be produced at a high titer from human HT-1080 fibrosarcoma cells that express TRIM5α (Ref1), showing that XMRV is resistant to TRIM5α restriction. In addition, XMRV poorly infects NIH 3T3 cells expressing human Xpr1 but relatively efficiently infects BALB 3T3 cells expressing human Xpr1, showing that XMRV is a B-tropic virus and that its infectivity is regulated by the Fv1 mouse locus.The association of human prostate cancer with mutations that impair the function of the antiviral defense protein RNase L suggested a role for virus in prostate cancer. Indeed, analysis of cDNA from prostate tumors by use of a DNA microarray (Virochip) containing conserved DNA sequences from all known virus families indicated the presence of a novel gammaretrovirus in 40% of prostate cancer patients having homozygous R462Q mutations in RNase L (35). Cloning and sequencing of the virus revealed a close similarity to mouse xenotropic retroviruses; thus, the new virus was named XMRV (xenotropic murine leukemia virus-related virus) (35). Importantly, XMRV has been found integrated into human genomic DNA from tumor-bearing prostatic tissue samples of 11 patients, showing that XMRV can indeed infect humans and is not a laboratory contaminant (7, 13). Although an initial study found XMRV only in tumor stromal cells (35), recent studies have found XMRV in the prostate carcinoma cell line 22Rv1 (14) and in malignant epithelial cells in prostate tumors (34).XMRV lacks a host cell-derived oncogene, but examples of oncogenic activity in Env proteins from other retroviruses (1, 6, 16, 24) raise the possibility that the Env protein of XMRV might also be oncogenic. Such activity could be a result of interaction of the XMRV Env protein with the virus entry receptor Xpr1 (7, 14), which shows similarity to a yeast protein involved in G protein-coupled signal transduction (2), or interaction with other cellular proteins that do not function as virus entry receptors, as is the case for jaagsiekte sheep retrovirus (JSRV) Env (interacting protein unknown) (16) and the Env protein of spleen focus-forming virus, which interacts with and activates the erythropoietin receptor and the receptor tyrosine kinase Stk (24). Detection of XMRV oncogenic activity would strengthen the argument for a role for XMRV in prostate cancer.In addition, while XMRV shows the highest sequence similarity to the mouse xenotropic retroviruses, it is also similar to the mink cell focus-forming (MCF) retroviruses of mice, which are highly leukemogenic due to their ability to multiply reinfect cells, leading to more-frequent activation of cellular oncogenes (36). MCF viruses were first defined by their ability to induce foci of altered cells in mink cell layers (11). Initially, it was unclear whether these foci were the result of cell transformation or cytopathic effects of the virus (11), but it is clear now that these foci result from cytopathic effects related to the ability of MCF viruses to multiply reinfect cells in what can be a receptor-independent manner, leading to cell apoptosis (23, 36, 37). It was thus important to determine if XMRV has similar properties and might be able to more frequently activate cellular oncogenes.Here, we have found that while XMRV lacks direct transforming activity in the fibroblast and epithelial cell lines tested and does not induce cytopathic effects typical of multiple reinfection by MCF viruses, it is able to induce rare transformed foci in a rat fibroblast cell line. Interestingly, in one case, transformation led to the production of a highly active oncogenic retrovirus.  相似文献   

4.
Sequences of the novel gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV) have been described in human prostate cancer tissue, although the amounts of DNA are low. Furthermore, XMRV sequences and polytropic (p) murine leukemia viruses (MLVs) have been reported in patients with chronic fatigue syndrome (CFS). In assessing the prevalence of XMRV in prostate cancer tissue samples we discovered that eluates from naïve DNA purification columns, when subjected to PCR with primers designed to detect genomic mouse DNA contamination, occasionally gave rise to amplification products. Further PCR analysis, using primers to detect XMRV, revealed sequences derived from XMRV and pMLVs from mouse and human DNA and DNA of unspecified origin. Thus, DNA purification columns can present problems when used to detect minute amounts of DNA targets by highly sensitive amplification techniques.  相似文献   

5.
6.
Virus from HT-1080 fibrosarcoma cells infected with the human retrovirus XMRV (xenotropic murine leukemia virus-related virus) can induce rare foci of transformation in rat 208F fibroblasts. Characterization of three such foci revealed that one produced an acutely transforming virus at a high titer. The virus consists of a mutant Nras cDNA from the HT-1080 cells inserted into a retroviral vector (added to the HT-1080 cells as a marker for infection) in place of internal vector sequences. These results show that XMRV can generate acutely transforming viruses at a low rate, as is typical of other replication-competent retroviruses, and reveal the potential for transforming virus contamination of retroviral vectors made from transformed cell lines.XMRV (xenotropic murine leukemia virus-related virus) has been associated with prostate cancer (19, 20) and chronic fatigue syndrome (12), although some researchers fail to detect XMRV in other populations with these diseases (4, 8). XMRV is found integrated into human genomic DNA from prostate cancer samples, indicating that it is indeed a human retrovirus and not a laboratory contaminant (3, 9). Because of the potential role of XMRV in prostate cancer, we previously tested XMRV for transforming activity in fibroblast and epithelial cell lines. Although XMRV is a simple retrovirus that does not carry a host-derived oncogene, there is precedence for transformation by retroviral Env genes (21, 22). However, transfection of XMRV proviral DNA or viral envelope expression vectors into 208F rat fibroblasts did not result in transformation, and infection of most cell types tested with XMRV did not induce transformation (13). In contrast, infection of 208F cells with XMRV did result in rare transformed foci suggestive of oncogene activation by XMRV. Characterization of cells from three transformed foci produced by infection of 208F cells with virus from HTX cells (a pseudodiploid subclone of HT-1080 fibrosarcoma cells [18]) infected with XMRV and the LAPSN retroviral vector (included as a marker for infection) revealed that all produced XMRV and that one produced a highly active transforming virus (13).  相似文献   

7.
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus found in association with human prostate cancer and chronic fatigue syndrome, although these associations are controversial. XMRV shows at most 94% identity to known mouse retroviruses. Here we used XMRV-specific PCR to search for a more closely related source of XMRV in mice. While we could not find a complete copy, we did find a 3,600-bp region of XMRV in an endogenous retrovirus present in NIH/3T3 cells. These results show that XMRV has clear ancestors in mice and highlight another possible source of contamination in PCR assays for XMRV.  相似文献   

8.

Background

The association of xenotropic murine leukemia virus (MLV)-related virus (XMRV) in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.

Results

All eight live attenuated vaccines, including Japanese encephalitis virus (JEV) (SA-14-14-2), varicella (Varivax), measles, mumps, and rubella (MMR-II), measles (Attenuvax), rubella (Meruvax-II), rotavirus (Rotateq and Rotarix), and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.

Conclusions

We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.  相似文献   

9.
10.

Background

Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV.

Results

Immunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1∶1024 and 1∶464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations.

Conclusions

Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans.  相似文献   

11.

Background

Autistic spectrum disorder (ASD) is characterized by impaired language, communication and social skills, as well as by repetitive and stereotypic patterns of behavior. Many autistic subjects display a dysregulation of the immune system which is compatible with an unresolved viral infection with prenatal onset, potentially due to vertical viral transmission. Recently, the xenotropic murine leukemia virus-related virus (XMRV) has been implicated in chronic fatigue syndrome (CFS) and in prostate cancer by several, though not all studies.

Methodology/Principal Findings

We assessed whether XMRV or other murine leukemia virus (MLV)-related viruses are involved in autistic disorder. Using nested PCR targeted to gag genomic sequences, we screened DNA samples from: (i) peripheral blood of 102 ASD patients and 97 controls, (ii) post-mortem brain samples of 20 ASD patients and 17 sex- and age-matched controls, (iii) semen samples of 11 fathers of ASD children, 25 infertile individuals and 7 fertile controls. No XMRV gag DNA sequences were detected, whereas peripheral blood samples of 3/97 (3.1%) controls were positive for MLV.

Conclusions|Significance

No MLV-related virus was detected in blood, brain, and semen samples of ASD patients or fathers. Hence infection with XMRV or other MLV-related viruses is unlikely to contribute to autism pathogenesis.  相似文献   

12.
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) has been amplified from human prostate cancer and chronic fatigue syndrome (CFS) patient samples. Other studies failed to replicate these findings and suggested PCR contamination with a prostate cancer cell line, 22Rv1, as a likely source. MLV-like sequences have also been detected in CFS patients in longitudinal samples 15 years apart. Here, we tested whether sequence data from these samples are consistent with viral evolution. Our phylogenetic analyses strongly reject a model of within-patient evolution and demonstrate that the sequences from the first and second time points represent distinct endogenous murine retroviruses, suggesting contamination.  相似文献   

13.

Background

Xenotropic murine leukemia virus-related virus (XMRV) has been found in the prostatic tissue of prostate cancer patients and in the blood of chronic fatigue syndrome patients. However, numerous studies have found little to no trace of XMRV in different human cohorts. Based on evidence suggesting common transmission routes between XMRV and HIV-1, HIV-1 infected individuals may represent a high-risk group for XMRV infection and spread.

Methodology/Principal Findings

DNA was isolated from the peripheral blood mononuclear cells (PBMCs) of 179 HIV-1 infected treatment naïve patients, 86 of which were coinfected with HCV, and 54 healthy blood donors. DNA was screened for XMRV provirus with two sensitive, published PCR assays targeting XMRV gag and env and one sensitive, published nested PCR assay targeting env. Detection of XMRV was confirmed by DNA sequencing. One of the 179 HIV-1 infected patients tested positive for gag by non-nested PCR whereas the two other assays did not detect XMRV in any specimen. All healthy blood donors were negative for XMRV proviral sequences. Sera from 23 HIV-1 infected patients (15 HCV+) and 12 healthy donors were screened for the presence of XMRV-reactive antibodies by Western blot. Thirteen sera (57%) from HIV-1+ patients and 6 sera (50%) from healthy donors showed reactivity to XMRV-infected cell lysate.

Conclusions/Significance

The virtual absence of XMRV in PBMCs suggests that XMRV is not associated with HIV-1 infected or HIV-1/HCV coinfected patients, or blood donors. Although we noted isolated incidents of serum reactivity to XMRV, we are unable to verify the antibodies as XMRV specific.  相似文献   

14.
Switzer WM  Jia H  Zheng H  Tang S  Heneine W 《PloS one》2011,6(5):e19065
BACKGROUND: The association of the xenotropic murine leukemia virus-related virus (XMRV) with prostate cancer continues to receive heightened attention as studies report discrepant XMRV prevalences ranging from zero up to 23%. It is unclear if differences in the diagnostic testing, disease severity, geography, or other factors account for the discordant results. We report here the prevalence of XMRV in a population with well-defined prostate cancers and RNase L polymorphism. We used broadly reactive PCR and Western blot (WB) assays to detect infection with XMRV and related murine leukemia viruses (MLV). METHODOLOGY/PRINCIPAL FINDINGS: We studied specimens from 162 US patients diagnosed with prostate cancer with a intermediate to advanced stage (Gleason Scores of 5-10; moderate (46%) poorly differentiated tumors (54%)). Prostate tissue DNA was tested by PCR assays that detect XMRV and MLV variants. To exclude contamination with mouse DNA, we also designed and used a mouse-specific DNA PCR test. Detailed phylogenetic analysis was used to infer evolutionary relationships. RNase L typing showed that 9.3% were homozygous (QQ) for the R462Q RNase L mutation, while 45.6% and 45.1% were homozygous or heterozygous, respectively. Serologic testing was performed by a WB test. Three of 162 (1.9%) prostate tissue DNA were PCR-positive for XMRV and had undetectable mouse DNA. None was homozygous for the QQ mutation. Plasma from all three persons was negative for viral RNA by RT-PCR. All 162 patients were WB negative. Phylogenetic analysis inferred a distinct XMRV. CONCLUSIONS AND THEIR SIGNIFICANCE: We found a very low prevalence of XMRV in prostate cancer patients. Infection was confirmed by phylogenetic analysis and absence of contaminating mouse DNA. The finding of undetectable antibodies and viremia in all three patients may reflect latent infection. Our results do not support an association of XMRV or MLV variants with prostate cancer.  相似文献   

15.
16.
The xenotropic murine leukemia virus-related virus (XMRV) has recently been detected in prostate cancer tissues and may play a role in tumorigenesis. It is currently unclear how this virus is transmitted and which factors promote its spread in the prostate. We show that amyloidogenic fragments known as semen-derived enhancer of virus infection (SEVI) originating from prostatic acid phosphatase greatly increase XMRV infections of primary prostatic epithelial and stromal cells. Hybrid simian/human immunodeficiency chimeric virus particles pseudotyped with XMRV envelope protein were used to demonstrate that the enhancing effect of SEVI, or of human semen itself, was at the level of viral attachment and entry. SEVI enhanced XMRV infectivity but did not bypass the requirement for the xenotropic and polytropic retrovirus receptor 1. Furthermore, XMRV RNA was detected in prostatic secretions of some men with prostate cancer. The fact that the precursor of SEVI is produced in abundance by the prostate indicates that XMRV replication occurs in an environment that provides a natural enhancer of viral infection, and this may play a role in the spread of this virus in the human population.Viruses are etiologic agents of various human cancers, including cervical carcinoma (caused by human papillomavirus), Kaposi''s sarcoma (caused by human herpesvirus 8), hepatocellular carcinoma (caused by hepatitis B virus and hepatitis C virus), and adult T-cell leukemia (caused by human T-cell leukemia virus type 1) (6). Genetic and epidemiologic evidence suggests that prostate cancer may also have an infectious etiology, although a causative agent has not been identified (4, 12). The gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV) is a candidate human tumor virus based on its association in human prostate tumors with a reduced-activity variant of the antiviral gene, RNASEL (also known as the hereditary prostate cancer 1 gene or HPC1) (17) and because it is a member of a viral family known to cause leukemias and lymphomas in different mammalian species (8). Interferon, through its effector RNase L, potently inhibits XMRV replication (5). XMRV integration sites in human prostate cancer tissues were mapped to cancer breakpoints, common fragile sites, micro-RNA genes, and cancer-related genes (11). Many of these genes are implicated directly or indirectly in prostate cancer and metabolic pathways that affect prostate cancer, including androgen signaling. XMRV has also been observed in prostate tissue from a nonfamilial prostate cancer patient and in an individual without prostate cancer (7). The possible role of XMRV in prostatic cancer raises questions about its ability to infect the prostate and the route of viral transmission.Recently, it has been shown that fragments of prostatic acid phosphatase (PAP), an abundant nonspecific protein phosphatase produced by the prostate (18) and secreted in semen in large quantities (about 2 mg/ml) (16), form amyloid fibrils that drastically enhance human immunodeficiency virus type 1 (HIV-1) infection (14). The fibrils of PAP248-286, termed semen-derived enhancer of virus infection (SEVI), enhanced the infectious virus titer by several orders of magnitude by capturing HIV-1 virions and promoting their attachment to target cells. The ability of SEVI to promote the interaction between virions and the cell surface is independent of the viral glycoprotein and hence is not restricted to HIV-1, although subsequent fusion between the viral and cellular membranes still required gp120, CD4, and an appropriate coreceptor (14). A recent study indicates that the positive charges on SEVI (pI = 10.21) promote infectivity by neutralizing negative-charge repulsion between HIV particles and the cell surface (15).Because SEVI originates from the prostate (the organ from which XMRV infection was discovered [17]) and promotes viral attachment in a relatively nonspecific manner, we sought to determine its effect on XMRV infection. Here we demonstrate that XMRV infectivity is greatly enhanced by SEVI or human semen and that XMRV RNA is detectable in expressed prostatic secretions (EPS) from human tumor-bearing prostates.  相似文献   

17.

Background

Detection of a retrovirus, xenotropic murine leukaemia virus-related virus (XMRV), has recently been reported in 67% of patients with chronic fatigue syndrome. We have studied a total of 170 samples from chronic fatigue syndrome patients from two UK cohorts and 395 controls for evidence of XMRV infection by looking either for the presence of viral nucleic acids using quantitative PCR (limit of detection <16 viral copies) or for the presence of serological responses using a virus neutralisation assay.

Results

We have not identified XMRV DNA in any samples by PCR (0/299). Some serum samples showed XMRV neutralising activity (26/565) but only one of these positive sera came from a CFS patient. Most of the positive sera were also able to neutralise MLV particles pseudotyped with envelope proteins from other viruses, including vesicular stomatitis virus, indicating significant cross-reactivity in serological responses. Four positive samples were specific for XMRV.

Conclusions

No association between XMRV infection and CFS was observed in the samples tested, either by PCR or serological methodologies. The non-specific neutralisation observed in multiple serum samples suggests that it is unlikely that these responses were elicited by XMRV and highlights the danger of over-estimating XMRV frequency based on serological assays. In spite of this, we believe that the detection of neutralising activity that did not inhibit VSV-G pseudotyped MLV in at least four human serum samples indicates that XMRV infection may occur in the general population, although with currently uncertain outcomes.  相似文献   

18.
Efforts to assess the prevalence of xenotropic murine leukemia virus-related virus (XMRV) in patients with prostate cancer and chronic fatigue syndrome have relied heavily on PCR-based testing of clinical samples and have yielded widely divergent findings. This week in Retrovirology, reports from four independent research groups illustrate the extreme care needed to exclude DNA or RNA contamination in PCR analyses of XMRV. In addition, phylogenetic evidence suggesting that previously-published XMRV sequences originated from a commonly-used prostate carcinoma cell line (22Rv1) is presented. These findings raise important questions regarding the provenance of XMRV and its potential connection to human disease.  相似文献   

19.

Background

The human exogenous gammaretrovirus XMRV is thought to be implicated in prostate cancer and chronic fatigue syndrome. Besides pressing epidemiologic questions, the elucidation of the tissue and cell tropism of the virus, as well as its sensitivity to retroviral restriction factors is of fundamental importance. The Apobec3 (A3) proteins, a family of cytidine deaminases, are one important group of host proteins that control primary infection and efficient viral spread.

Methodology/Principal Findings

Here we demonstrate that XMRV is resistant to human Apobec 3B, 3C and 3F, while being highly susceptible to the human A3G protein, a factor which is known to confer antiviral activity against most retroviruses. We show that XMRV as well as MoMLV virions package Apobec proteins independent of their specific restriction activity. hA3G was found to be a potent inhibitor of XMRV as well as of MoMLV infectivity. In contrast to MoMLV, XMRV infection can also be partially reduced by low concentrations of mA3. Interestingly, established prostate cancer cell lines, which are highly susceptible to XMRV infection, do not or only weakly express hA3G.

Conclusions

Our findings confirm and extend recently published data that show restriction of XMRV infection by hA3G. The results will be of value to explore which cells are infected with XMRV and efficiently support viral spread in vivo. Furthermore, the observation that XMRV infection can be reduced by mA3 is of interest with regard to the current natural reservoir of XMRV infection.  相似文献   

20.

Background

XMRV is the most recently described retrovirus to be found in Man, firstly in patients with prostate cancer (PC) and secondly in 67% of patients with chronic fatigue syndrome (CFS) and 3.7% of controls. Both disease associations remain contentious. Indeed, a recent publication has concluded that “XMRV is unlikely to be a human pathogen”. Subsequently related but different polytropic MLV (pMLV) sequences were also reported from the blood of 86.5% of patients with CFS. and 6.8% of controls. Consequently we decided to investigate blood donors for evidence of XMRV/pMLV.

Methodology/Principal Findings

Testing of cDNA prepared from the whole blood of 80 random blood donors, generated gag PCR signals from two samples (7C and 9C). These had previously tested negative for XMRV by two other PCR based techniques. To test whether the PCR mix was the source of these sequences 88 replicates of water were amplified using Invitrogen Platinum Taq (IPT) and Applied Biosystems Taq Gold LD (ABTG). Four gag sequences (2D, 3F, 7H, 12C) were generated with the IPT, a further sequence (12D) by ABTG re-amplification of an IPT first round product. Sequence comparisons revealed remarkable similarities between these sequences, endogeous MLVs and the pMLV sequences reported in patients with CFS.

Conclusions/Significance

Methodologies for the detection of viruses highly homologous to endogenous murine viruses require special caution as the very reagents used in the detection process can be a source of contamination and at a level where it is not immediately apparent. It is suggested that such contamination is likely to explain the apparent presence of pMLV in CFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号