首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities. Yet another series of serious health problems are posed by infections in immunocompromised individuals. Common therapies for herpes viral infections employ nucleoside analogs, such as Acyclovir, and target the viral DNA polymerase, essential for viral DNA replication. Although clinically useful, this class of drugs exhibits a narrow antiviral spectrum, and resistance to these agents is an emerging problem for disease management. A better understanding of herpes virus replication will help the development of new safe and effective broad spectrum anti-herpetic drugs that fill an unmet need. Here, we present the first crystal structure of a herpesvirus polymerase, the Herpes Simplex Virus type 1 DNA polymerase, at 2.7 A resolution. The structural similarity of this polymerase to other alpha polymerases has allowed us to construct high confidence models of a replication complex of the polymerase and of Acyclovir as a DNA chain terminator. We propose a novel inhibition mechanism in which a representative of a series of non-nucleosidic viral polymerase inhibitors, the 4-oxo-dihydroquinolines, binds at the polymerase active site interacting non-covalently with both the polymerase and the DNA duplex.  相似文献   

2.
Abstract

Cancer diseases are widely recognised as an important medical problem and killing millions of people in a year. Chemotherapeutic drugs are successful against cancer in many cases and different compounds, including the analogues of natural substances, may be used for anticancer agents. Nucleoside analogues also have become a necessity for the treatment of cancer diseases. Nucleoside, nucleotide and base analogues have been utilised for decades for the treatment of viral pathogens, neoplasms and in anticancer chemotherapy. This review focuses on the different types of nucleosides and their potential role as anticancer agents. It also discusses the nucleoside analogues approved by FDA and in process of approval. The effect of the substitution on the nucleoside analogues and their pharmacological role is also discussed in the review. Owing to the advances in computational chemistry, it concludes with the future advancement and possible outcome of the nucleoside analogues. Also, it depicts the development of heterocyclic nucleoside analogues, explores the QSAR of the synthesised compounds and discusses the 3?D QSAR pharmacophore modelling in order to examine their potential anti-cancer activities.  相似文献   

3.
Genetic defects in polymerase eta (pol eta; hRad30a gene) result in xeroderma pigmentosum variant syndrome (XP-V), and XP-V patients are sensitive to sunlight and highly prone to cancer development. Here, we show that pol eta plays a significant role in modulating cellular sensitivity to DNA-targeting anticancer agents. When compared with normal human fibroblast cells, pol eta-deficient cells derived from XP-V patients were 3-fold more sensitive to beta-d-arabinofuranosylcytosine, gemcitabine, or cis-diamminedichloroplatinum (cisplatin) single-agent treatments and at least 10-fold more sensitive to the gemcitabine/cisplatin combination treatment, a commonly used clinical regimen for treating a wide spectrum of cancers. Cellular and biochemical analyses strongly suggested that the higher sensitivity of XP-V cells to these agents was due to the inability of pol eta-deficient cells to help resume the DNA replication process paused by the gemcitabine/cisplatin-introduced DNA lesions. These results indicated that pol eta can play an important role in determining the cellular sensitivity to therapeutic agents. The findings not only illuminate pol eta as a potential pharmacologic target for developing new anticancer agents but also provide new directions for improving future chemotherapy regimen design considering the use of nucleoside analogues and cisplatin derivatives.  相似文献   

4.
Catechins in green tea have anticancer and antiangiogenesis activities, with epigallocatechin-3-gallate (EGCG) being the most potent antiangiogenic tea catechin. This study examined whether chemical modification of catechin enhanced anticancer and antiangiogenic effects. Catechin, conjugated with fatty acid (acyl-catechin), strongly inhibited DNA polymerase, HL-60 cancer cell growth, and angiogenesis. Catechin conjugated with stearic acid [(2R,3S)-3',4',5,7-tetrahydroxyflavan-3-yl octadecanoate; catechin-C18] was the strongest inhibitor in DNA polymerase alpha and beta and angiogenesis assays. Catechin-C18 also suppressed human endothelial cell (HUVEC) tube formation on the reconstituted basement membrane, suggesting that it affected not only DNA polymerases but also signal transduction pathways in HUVECs. These data indicate that acyl-catechins target both DNA polymerases and angiogenesis as anticancer agents. These results suggest that acylation of catechin is an effective chemical modification to improve the anticancer activity of catechin.  相似文献   

5.
Abnormal replication of DNA is associated with many important human diseases, most notably viral infections and neoplasms. Existing approaches to chemotherapeutics for diseases associated with dysfunctional DNA replication classically involve nucleoside analogues that inhibit polymerase activity due to modification in the nucleobase and/or ribose moieties. These compounds must undergo multiple phosphorylation steps in vivo, converting them into triphosphosphates, in order to inhibit their targeted DNA polymerase. Nucleotide monophosphonates enable bypassing the initial phosphorylation step at the cost of decreased bioavailability. Relatively little attention has been paid to higher nucleotides (corresponding to the natural di- and triphosphate DNA polymerase substrates) as drug platforms due to their expected poor deliverability. However, a better understanding of DNA polymerase mechanism and fidelity dependence on the triphosphate moiety is beginning to emerge, aided by systematic incorporation into this group of substituted methylenebisphosphonate probes. Meanwhile, other bridging, as well as non-bridging, modifications have revealed intriguing possibilities for new drug design. We briefly survey some of this recent work, and argue that the potential of nucleotide-based drugs, and intriguing preliminary progress in this area, warrant acceptance of the challenges that they present with respect to bioavailability and metabolic stability.  相似文献   

6.
Lee H  Hanes J  Johnson KA 《Biochemistry》2003,42(50):14711-14719
Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.  相似文献   

7.
8.
细胞周期中MicroRNA的调控作用   总被引:1,自引:0,他引:1  
MicroRNA是近年来发现并热点研究的一类重要的非编码RNA,在干细胞的更新与分化、体细胞性状与数量的维持、甚至肿瘤细胞的恶性增生等生物学过程中都具有重要的调控作用.microRNA通过与靶位点结合而快速有效地降解靶基因mRNA或抑制蛋白的翻译,下调E2F、CDK、cyclin、p21、p27、DNA多聚酶α等关键的细胞周期调控因子的表达,加速或减慢细胞增殖的速度.microRNA对细胞周期的调控还将涉及到微生物感染机体的过程、免疫系统的调控、妊娠期母体的变化、组织的修复、细胞的凋亡与衰老等诸多方面.随着对microRNA调控细胞周期机制的深入研究,microRNA及其靶基因不仅可以作为某些疾病的分子标记物,而且可以用于指导疾病的预防和治疗.  相似文献   

9.
This Special Thematic Issue explores the molecular properties of DNA polymerases as extraordinary biological catalysts. In this short introductory chapter, I briefly highlight some of the most important concepts from the articles contained within this Special Issue. The contents of this Special Issue are arranged into distinct sub-categories corresponding to mechanistic studies of faithful DNA polymerization, studies of "specialized" DNA polymerases that function on damaged DNA, and DNA polymerases that are of therapeutic importance against various diseases. Emphasis is placed on understanding the dynamic cellular roles and biochemical functions of DNA polymerases, and how their structure and mechanism impact their cellular roles.  相似文献   

10.
Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton.  相似文献   

11.
12.
Varicella zoster virus (VZV) is usually associated with mild to moderate illness in immunocompetent patients. However, older age and immune deficiency are the most important risk factors linked with virus reactivation and severe complications. Treatment of VZV infections is based on nucleoside analogues, such as acyclovir (ACV) and its valyl prodrug valacyclovir, penciclovir (PCV) as its prodrug famciclovir, and bromovinyldeoxyuridine (BVDU; brivudin) in some areas. The use of the pyrophosphate analogue foscarnet (PFA) is restricted to ACV-resistant (ACV(r)) VZV infections. Since antiviral drug resistance is an emerging problem, we attempt to describe the contributions of specific mutations in the viral thymidine kinase (TK) gene identified following selection with ACV, BVDU and its derivative BVaraU (sorivudine), and the bicyclic pyrimidine nucleoside analogues (BCNAs), a new class of potent and specific anti-VZV agents. The string of 6 Cs at nucleotides 493 to 498 of the VZV TK gene appeared to function as a hot spot for nucleotide insertions or deletions. Novel amino acid substitutions (G24R and T86A) in VZV TK were also linked to drug resistance. Six mutations were identified in the "palm domain" of VZV DNA polymerase in viruses selected for resistance to PFA, PCV, and the 2-phophonylmethoxyethyl (PME) purine derivatives. The investigation of the contributions of specific mutations in VZV TK or DNA polymerase to antiviral drug resistance and their impacts on the structures of the viral proteins indicated specific patterns of cross-resistance and highlighted important differences, not only between distinct classes of antivirals, but also between ACV and PCV.  相似文献   

13.
Nucleotide and nucleoside-based analogue drugs are widely used for the treatment of both acute and chronic viral infections. These drugs inhibit viral replication due to one or more distinct mechanisms. It modifies the virus's genetic structure by reducing viral capacity in every replication cycle. Their clinical success has shown strong effectiveness against several viruses, including ebolavirus, hepatitis C virus, HIV, MERS, SARS-Cov, and the most recent emergent SARS-Cov2. In this review, seven different types of inhibitors have been selected that show broad-spectrum activity against RNA viruses. A detailed overview and mechanism of actionof both analogues are given, and the clinical perspectives are discussed. These inhibitors incorporated the novel SARS-CoV-2 RdRp, further terminating the polymerase activity with variable efficacy. The recent study provides a molecular basis for the inhibitory activity of virus RdRp using nucleotide and nucleoside analogues inhibitors. Furthermore, to identify those drugs that need more research and development to combat novel infections. Consequently, there is a pressing need to focus on present drugs by establishing their cell cultures. If their potencies were evidenced, then they would be explored in the future as potential therapeutics for novel outbreaks.  相似文献   

14.
Cordycepin: A bioactive metabolite with therapeutic potential   总被引:1,自引:0,他引:1  
Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment.  相似文献   

15.
Acyclic nucleosides as antiviral compounds   总被引:2,自引:0,他引:2  
  相似文献   

16.
A Bernad  A Zaballos  M Salas    L Blanco 《The EMBO journal》1987,6(13):4219-4225
The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.  相似文献   

17.
The nucleoside analogue ribavirin (R) is mutagenic for foot-and-mouth disease virus (FMDV). Passage of FMDV in the presence of increasing concentrations of R resulted in the selection of FMDV with the amino acid substitution M296I in the viral polymerase (3D). Measurements of progeny production and viral fitness with chimeric viruses in the presence and absence of R documented that the 3D substitution M296I conferred on FMDV a selective replicative advantage in the presence of R but not in the absence of R. In polymerization assays, a purified mutant polymerase with I296 showed a decreased capacity to use ribavirin triphosphate as a substrate in the place of GTP and ATP, compared with the wild-type enzyme. The results suggest that M296I has been selected because it attenuates the mutagenic activity of R with FMDV. Replacement M296I is located within a highly conserved stretch in picornaviral polymerases which includes residues that interact with the template-primer complex and probably also with the incoming nucleotide, according to the three-dimensional structure of FMDV 3D. Given that a 3D substitution, distant from M296I, was associated with resistance to R in poliovirus, the results indicate that picornaviral polymerases include different domains that can alter the interaction of the enzyme with mutagenic nucleoside analogues. Implications for lethal mutagenesis are discussed.  相似文献   

18.
DNA glycosylases are enzymes that initiate base excision repair, a process of removal of damaged bases from the cellular DNA. Recent data show that variants of two human DNA glycosylases, MUTYH and OGG1, are associated with an increased risk of cancer. In addition, activities of various DNA glycosylases have been implicated in protection of humans from neurodegenerative diseases, immune disorders and viral infections. On the other hand, DNA glycosylases from pathogenic microorganisms help them to avoid the host defensive systems. Thus, DNA glycosylases represent both potential therapeutic agents and drug targets.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号