首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
武夷山不同海拔黄山松枝叶大小关系   总被引:1,自引:0,他引:1  
对武夷山自然保护区不同海拔黄山松叶片面积、叶片数量、小枝长度及小枝直径等性状进行测定,分析不同海拔黄山松枝-叶大小间的权衡关系.结果表明: 随海拔升高,黄山松小枝的叶片数量、小枝长度、小枝直径、出叶强度及茎截面积逐渐增大,单叶面积呈逐渐减小趋势;不同海拔黄山松小枝出叶强度与单叶面积均呈显著负相关,不同海拔黄山松小枝茎截面积与总叶面积呈显著正相关;不同海拔黄山松小枝长度、小枝直径与出叶强度呈显著负相关,与单叶面积、叶片数量及总叶面积均呈显著正相关.为提高竞争优势或是资源利用效率,低海拔黄山松倾向于在短枝上着生量少但单叶面积大的针叶,而高海拔黄山松趋向于在长枝上着生量大但单叶面积小的针叶,这体现出不同海拔梯度黄山松小枝的资源利用策略及枝叶间生物量分配的权衡机制.  相似文献   

2.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

3.
Abstract

In order to test the hypothesis that arthropod-induced neoplastic formations on trees affect biochemical characteristics of both the newly formed galls and host plant tissues, biochemical characteristics with a possible adaptive role were determined in nine gall-former–host tree combinations. Photosynthetic pigments, extractable protein content, and oxidative enzyme activities were determined in gall tissues, leaf tissues of galled leaves, and leaves on ungalled tree branches. Neoplastic tissues were characterized by a low content of photosynthetic pigments, decreased chlorophyll a/b ratio, lower extractable protein content, and decreased activities of peroxidase and polyphenol oxidase as compared with ungalled host leaf tissues. In galled leaves or in leaves adjacent to galls, increased level of peroxidase activity was found. In several gall-inducer–host plant combinations, galled host plant tissues contained increased activity of polyphenol oxidase as well. The presented data reflect long-term systemic effects of neoplastic formation on host tree physiology suggesting that gall inducers affect potential adaptive responses of host plants.  相似文献   

4.
亚热带常绿阔叶林植物幼树阶段适应林内生境并开枝散叶是其长成大树的一个重要过程, 植物一年内多次抽枝的现象及其在抽枝展叶过程中小枝伸长、枝茎增粗与叶面积的增加优先顺序及其内在驱动机制还有待进一步研究。该研究对青城山常绿阔叶林木本植物多次抽枝发生比例进行了调查, 并以茶(Camellia sinensis)、细枝柃(Eurya loquaiana)、短刺米槠(Castanopsis carlesii var. spinulosa)、润楠(Machilus nanmu)和大叶山矾(Symplocos grandis) 5种植物的幼树为研究对象, 比较分析了植物在多次抽枝中小枝和叶片生长动态及适应策略的差异。结果显示: 1)一、二次抽枝分别开始于春季(4月)和夏末(8月下旬), 小枝水平上二次抽枝率乔木小于灌木, 常绿植物小于落叶植物。2)一次抽枝小枝枝长、单叶面积, 小枝直径和叶片数量(除大叶山矾外)均高于二次抽枝, 但二次抽枝单叶面积相对生长速率均高于一次抽枝, 二次抽枝叶片比叶质量(LMA)的增长速率高于一次抽枝。3)一次抽枝小枝枝长、叶片数量、小枝直径(除细枝柃和短刺米槠外)和总叶面积(除短刺米槠外)最大相对生长速率均高于二次抽枝, 且大部分物种最大相对生长速率出现在抽枝开始的第一、二周。4)两次抽枝中, 物种先侧重于叶片的生长, 其次是小枝枝长的生长, 最后是小枝直径的增粗。单叶面积和总叶面积皆随着小枝枝长和小枝直径的增加呈显著的异速生长关系, 表明叶片的增长速度大于小枝。单叶面积与叶片数呈显著大于1的异速生长关系, 暗示单叶面积的增长速度大于叶片数的增加速度。小枝枝长与小枝直径也呈显著大于1的异速生长关系, 揭示小枝枝长的增长速度大于小枝直径。综上所述, 两次抽枝过程中, 植物枝叶的优先生长顺序反映了植物为获取更多的资源(尤其是光源)而形成特定的抽枝展叶策略; 二次抽枝单叶面积相对生长速率和LMA增长速率高于一次抽枝, 这可能与植物即将面临的昆虫取食和气温降低压力有关。因此, 了解植物抽枝策略对于理解物种生态适应机制, 揭示物种生活史过程中存在的权衡关系具有重要的理论意义。  相似文献   

5.
Patterns of galling by the gall midge Lopesia brasiliensis (Diptera: Cecidomyiidae) were studied in Ossaea confertiflora (Melastomataceae) in an Atlantic forest site at Ilha Grande, RJ. Out of the 81 plants surveyed, 55 (67.9%) bore galls. The number of galls per galled individual ranged from 1 to 261 and 94.4% of the galls were in leaves. The number of galls per galled leaf varied from 1 to 25. Total gall number was positively correlated with plant height. Larger and more ramified plants tended to have a smaller percentage of their leaves with galls and a lower density of galls per leaf than smaller plants. Plants that were close to other individuals of the same species tended to have more galls per leaf than relatively isolated plants. The observed patterns may be linked to strategies of optimization in the use of resources (i.e. oviposition sites) and predation avoidance by the gall midges.  相似文献   

6.
1. The relationship between plant traits and the frequency of attack by a stem galling midge, Neolasioptera sp. (Diptera: Cecidomyiidae), on Eremanthus erythropappus (Asteraceae) was studied. The morphological changes of the host after a galler attack and the potential effects of these changes on attacks by the next generation of gallers were analysed. The study was conducted in the Serra do Japi, São Paulo, south-eastern Brazil. 2. Galled branches were significantly longer, thicker, and had more leaves than ungalled branches. Accordingly, gall establishment was higher in the longer and more foliose branches. Hence, it is suggested that ovipositing females are maximizing their performance by selecting larger branches. 3. Galled branches were larger than ungalled branches of the same age. Two hypotheses, not necessarily exclusive, can explain this pattern: (1) the plant vigour hypothesis that the females are choosing the more vigorous, fast-growing branches, which still remain more vigorous after galling; or (2) the resource regulation hypothesis that galling increases branch growth rates, thus increasing resource quality for forthcoming conspecifics. 4. Co-occurrence frequencies of current and past generation galls showed that the likelihood of a branch being galled increased when it, or the branch from which it stemmed, had been galled before. The data indicated that this preference was conditioned by the number of previous attacks. Heavier attack intensities, such as one gall in the same branch and another in the branch from which it stemmed, decreased the probability of further galling. 5. The suggested links between herbivore attack and plant traits indicate that studies on host selection by phytophagous insects must take into account that herbivory itself may change the plant traits that are postulated to be selected by the insects.  相似文献   

7.
The sexual generation of a cynipid wasp, Andricus symbioticus Kovalev, forms its leaf galls most frequently near and on the leaf petiole of Quercus trees. I examined the effect of gall formation by A. symbioticus on the leaf development of a host plant, Quercus dentata Thunberg, by comparing the size and shape of galled and ungalled leaves. I also examined the effect of gall formation on shoot development by comparing the length of shoots with and without galled leaves. Three of seven Q. dentata trees surveyed were heavily infested with A. symbioticus. Leaf size did not differ between galled and ungalled leaves. However, the ratio of leaf width to length was greater in galled leaves, which is regarded to be a result of gall formation by A. symbioticus inhibiting the growth in length of Q. dentata leaves. Shoot length did not differ significantly between shoots with and without galled leaves. These results suggest that galls of A. symbioticus act as a sink that competes with leaves for reserved photoassimilates.  相似文献   

8.
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.  相似文献   

9.
Gall-site selection by the aphid Kaltenbachiella japonica was evaluated in relation to leaf position in a shoot, and gall positions within a leaf. First-instar fundatrices induce closed galls on the midribs of host leaves, and several galls were often induced on one leaf. Leaves with many galls were often withered before emergence of sexuparae from the galls. Within a leaf, gall volume was positively correlated with the sum of lateral-vein length in the leaf segment at which the gall was induced. The observed pattern in gall volume among the leaf segments corresponded with that in the lateral-vein length. These results show that a foundatrix selects the most vigorous position within a leaf to produce more offspring. Although distal leaves grew faster than did basal leaves, gall density was highest on leaves at the middle order when a shoot has more than seven leaves. Optimal gall-site selection seems to be constrained by the asynchrony in timing between the hatching of fundatrices and leaf growth within a shoot. These results suggest that the observed gall distribution is affected by both the distribution of suitable galling sites within a leaf and the synchrony with leaf phenology of the host plant.  相似文献   

10.
Stem galls affect oak foliage with potential consequences for herbivory   总被引:1,自引:0,他引:1  
Abstract.   1. On two dates, foliar characteristics of pin oak, Quercus palustris , infested with stem galls caused by the horned oak gall, Callirhytis cornigera , were investigated, and the consequences for subsequent herbivory assessed.
2. Second-instar caterpillars of the gypsy moth, Lymantria dispar , preferred foliage from ungalled trees.
3. Ungalled trees broke bud earlier than their galled counterparts.
4. Galled trees produced denser leaves with higher nitrogen and tannin concentrations, but foliar carbohydrates did not differ among galled and ungalled trees.
5. Concentrations of foliar carbohydrates in both galled and ungalled trees increased uniformly between the two assay dates. Nitrogen concentrations were greater in leaves from galled trees, and decreased uniformly in galled and ungalled trees over time. Foliar tannins were also greater in foliage from galled trees early in the season; however, foliar tannins declined seasonally in galled tissue so that by the second assay date there was no difference in tannin concentrations between galled and ungalled foliage.
6. In spite of differences in foliar characteristics, performance of older, fourth instar gypsy moth caterpillars did not differ between galled and ungalled trees.  相似文献   

11.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

12.
Westoby M  Wright IJ 《Oecologia》2003,135(4):621-628
There is a spectrum from species with narrow, frequently branched twigs carrying small leaves and other appendages, to species with thick twigs carrying large leaves and appendages. Here we investigate the allometry of this spectrum and its relationship to two other important spectra of ecological variation between species, the seed mass-seed output spectrum and the specific leaf area-leaf lifespan spectrum. Our main dataset covered 33 woody dicotyledonous species in sclerophyll fire-prone vegetation on low nutrient soil at 1,200 mm annual rainfall near Sydney, Australia. These were phylogenetically selected to contribute 32 evolutionary divergences. Two smaller datasets, from 390 mm annual rainfall, were also examined to assess generality of cross-species patterns. There was two to three orders of magnitude variation in twig cross-sectional area, individual leaf size and total leaf area supported on a twig across the study species. As expected, species with thicker twigs had larger leaves and branched less often than species with thin twigs. Total leaf area supported on a twig was mainly driven by leaf size rather than by the number of leaves. Total leaf area was strongly correlated with twig cross-section area, both across present-day species and across evolutionary divergences. The common log-log slope of 1.45 was significantly steeper than 1. Thus on average, species with tenfold larger leaves supported about threefold more leaf area per twig cross-section, which must have considerable implications for other aspects of water relations. Species at the low rainfall site on loamy sand supported about half as much leaf area, at a given twig cross-section, as species at the low rainfall site on light clay, or at the high rainfall site. Within sites, leaf and twig size were positively correlated with seed mass, and negatively correlated with specific leaf area. Identifying and understanding leading spectra of ecological variation among species is an important challenge for plant ecology. The seed mass-seed output and specific leaf area-leaf lifespan spectra are each underpinned by a single, comprehensible trade-off and their consequences are fairly well understood. The leaf-size-twig-size spectrum has obvious consequences for the texture of canopies, but we are only just beginning to understand the costs and benefits of large versus small leaf and twig size.  相似文献   

13.
We investigated plant-mediated effects of the stem gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), on other herbivores on the chestnut tree Castanea crenata. In the early season, leaves emerged earlier and in greater numbers on galled shoots than on ungalled shoots. On galled shoots the leaf to shoot biomass ratio was lower and the leaves were physically different. In May and June the concentration of nitrogen in leaves was higher on galled shoots than on ungalled shoots. In July, the water content of leaves was lower on galled shoots. In May and June, the number of aphids, Myzocallis kuricola Matsumura (Homoptera: Aphidoidea), on leaves was higher on galled shoots than on ungalled shoots, but the opposite was true at the end of July. Laboratory experiments showed that aphid fecundity and body weight decrease were higher in May and June when aphids fed on leaves on a galled shoot than when they fed on those on ungalled shoots. In contrast, aphid performance in July was greater on ungalled leaves than on galled leaves. Our findings suggest that gall initiation in a chestnut tree affected aphid performance by affecting host plant quality.  相似文献   

14.
Alstonia scholaris (Dr C. Alston, 1685–1760) (Family Apocynaceae) (Chattim tree), commonly known as devil tree, is an evergreen tropical tree. The tree is native to India and also found in Sri Lanka, Southern China, throughout Malaysia to northern Australia. This plant is seriously damaged by formation of tumor like galls across the Kolkata city,West Bengal which affects its ornamental and medicinal value. Gall is formed by ovipositing adults of Pseudophacopteron alstonium Yang et Li 1983 (Hemiptera: Psyllidae: Phacopteronidae) and results in destruction of host plant. The nymphal stage undergoes moulting through first instar to third instar to reach the adult within galls. It is observed that highly infested leaves can bear 60–80 galls. The gallmaker Pseudophacopteron sp. stresses the host organ, and the host counters it with physiological activities supplemented by newly differentiated tissues. In infested leaves, chlorophyll and carbohydrate contents decreased sequentially with the age of the gall. There were no significant changes in protein and total amino acid content in gall tissue. But total lipid content was highest in mature galled leaves. Increased phenolic content after psylloid herbivory, which exerted oxidative stress on the host plants, was observed in gall infested leaves as compared to fresh ungalled leaves of Alstonia scholaris. Moisture content was highest in ungalled healthy leaves than the young galled, mature galled and perforated galled leaves.  相似文献   

15.
We examined how leaf galls, induced by the cynipid wasp Phanacis taraxaci, influence the partitioning of photoassimilates within the host, the common dandelion, Taraxacum officinale. Galled and ungalled plants were exposed to 14CO2 and the labelled photoassimilates accumulating within galls and other parts of the host were measured. During the growth phase of the gall they were physiological sinks for photoassimilates, accumulating 9% to 70% of total carbon produced by the host, depending upon the number of galls per plant. High levels of 14C assimilation in the leaves of galled plants compared to controls, suggest that galls actively redirect carbon resources from unattacked leaves of their host plant. This represents a significant drain on the carbon resources of the host, which increases with the number and size of galls per plant. Active assimilation of 14C by the gall is greatest in the growth phase and is several orders of magnitude lower in the maturation phase. This finding is consistent with physiological and anatomical changes that occur during the two phases of gall development and represents a key developmental strategy by cynipids to ensure adequate food resources before larval growth begins.  相似文献   

16.
浙江天童木本植物小枝的“大小-数量”权衡   总被引:1,自引:0,他引:1       下载免费PDF全文
枝条大小和数量关系反映了植物适应环境胁迫的构型和生物量分配策略。该研究以浙江天童木本植物为对象, 通过对小枝大小(横截面积)与数量(稠密度)关系的研究发现: 1)小枝稠密度与枝截面积显著负相关(斜率为-1.32, CI = -1.48- -1.17; p < 0.05); 2)在相同曝光度, 在II级曝光环境(植株40%-80%暴露在直射光中)中常绿植物比落叶植物单位小枝截面积的小枝稠密度高, 而在I级(植株<40%暴露在直射光中)和III级(>80%暴露在直射光中)曝光环境中, 小枝稠密度在两种生活型间无显著差异; 3)在不同曝光度下, 常绿植物单位枝条在I和II级比III级曝光水平具有更高的小枝稠密度; 但落叶植物单位枝条的小枝稠密度在3个曝光水平相同; 4)相同枝条大小下, 4 m以下灌木比4 m以上的亚乔木和乔木具有更高的小枝稠密度。总之, 天童地区木本植物的小枝“大小-数量”关系符合Corner法则(描述枝叶“大小-数量”关系的法则), 且在不同生活型间存在差异, 常绿植物相对于落叶植物, 灌木相对于乔木具有较高的小枝稠密度, 从而有利于它们适应光资源的限制。  相似文献   

17.
Comparative leaf production rates and leaf morphology studiesfor galled and normal shoots of yew trees have been obtainedthroughout the life cycle of the causative agent, the gall midge,Taxomyia taxi. Normal and galled shoot leaf numbers have beenrelated to those of their parent shoots. It was found that whereasthe annual leaf production of normal shoots was positively relatedto that of the parent shoots, galled shoot leaf production remainedconstant regardless of parent shoot vigour showing leaf stimulationby the midge to be a special case. The midge larva appears tobe determining the rate of leaf production in galled shoots.In galls leaf production continues throughout the winter monthswith no dormant period. From morphological evidence, alternationof leaves and cataphylls is continued in galled buds.  相似文献   

18.
《Journal of Asia》2014,17(2):151-154
Previous studies of the impacts of galls on host leaf photosynthesis do not suggest any general trends, with a reported range of effects from negative to positive. In this study, photosynthetic characteristics such as chlorophyll fluorescence (Fv/Fm), photosynthetic capacity, and stomata conductance were determined in two types of fruit-like galls (red ovoid and green obovate galls) induced by Daphnephila taiwanensis and Daphnephila sueyenae, respectively, in order to investigate whether the number of galls affects the photosynthesis of galled leaves of Machilus thunbergii. In 2008, chlorophyll fluorescence and photosynthetic capacity were negatively correlated with gall numbers, non-significantly and significantly, respectively, whereas stomata conductance was positively but non-significantly correlated with gall numbers. In 2009, photosynthesis capacity and stomata conductance were negatively, but non-significantly, correlated with gall numbers. Results imply that photosynthesis in M. thunbergii leaves is slightly affected by the number of cecidomyiid insect galls, and that the higher the gall number, the greater the negative effect that galls have on host leaf photosynthesis and subsequent infection.  相似文献   

19.
Plants exhibit a wide array of inert and induced responses in defense against herbivore attack. Among these the abscission of organs has been argued to be a highly effective mechanism, depending, however, on the herbivore’s feeding mode. While consisting of plant tissues, insect induced galls are seen as the extended phenotype of the gall inducer which might circumvent many or most of the plant defenses. There is very little information whether and how far beyond the gall tissue gall inducers might affect plant tissues. A localized impact is likely to leave the abscission of galled organs as a viable defense although at a cost. Here, we report on an instance where the host plant, Neea madeirana (Nyctaginaceae) abscises leaves galled by two species of Bruggmannia (Diptera: Cecidomyiidae), more frequently than ungalled leaves in a rain forest in Amazonia, Brazil. Once on the forest floor the leaves decay quickly, while both gall types show signs of localized maintenance of healthy tissues for a while (the green island effect). However, on the forest floor galls are exposed to a new set of potential natural enemies. Both gall types show a minimum of a five-fold increase in mortality due to pathogens (fungi and bacteria) compared to galls that were retained on the host tree. We discuss the adaptive nature of plant organ abscission as a plant defense against gallers and as a gall inducer adaptive trait. Handling editor: Graham Stone.  相似文献   

20.
Insect herbivory can negatively or positively affect plant performance. We examined how a stem gall midge Rabdophaga rigidae affects the survival, growth, and bud production of current year shoots of the willow Salix eriocarpa. In mid-May, the gall midge initiates stem galls on the apical regions of shoots. The following spring, galled shoots had thicker basal diameters and more lateral shoots than ungalled shoots. Although galled shoots were on average 1.6 times longer than ungalled shoots, there were no significant differences in shoot length or in the numbers of reproductive, vegetative, and dormant buds per shoot. However, the subsequent survival of galled shoots was significantly higher than that of ungalled shoots, probably because of the thicker basal diameter. This increased shoot survival resulted in approximately two times greater reproductive, vegetative, and dormant bud production on galled shoots compared with ungalled shoots in the following spring. These results suggest that the willow regrowth induced by galling can lead to an increase in bud production through increased shoot survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号