首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
The growth rate of Pseudomonas fluorescens was greater and continued at lower water activity ( a w) values when glycerol controlled the a w of glucose minimal medium than when the a w was controlled by NaCl and sucrose. Growth was not observed below 0·945, 0·970 and 0·964 a w when glycerol, sucrose and NaCl respectively controlled the a w. The catabolism of glucose, Na lactate and DL-arginine as measured by respirometry was completely inhibited at a w values greater than the minimum for growth when the a w was controlled with NaCl. When the a w was controlled with glycerol, catabolism of the three substrates continued at a w values significantly below the a w for growth on glucose. Catabolism of glucose in the presence of sucrose occurred at a level below the minimum growth a w but catabolism of the other two substrates ceased at a w values greater than the minimum growth a w. Arrhenius plots between 10° and 34°C of the growth rate in glucose minimal medium at 0·98 a w showed that the order of inhibition was sucrose > NaCl > glycerol. The order of inhibition differed when Arrhenius plots of catabolism of glucose was examined between 10° and 34 °C, namely NaCl > sucrose > glycerol. The mechanism of action of solutes controlling a w is discussed.  相似文献   

2.
The energy density ( E D) of anchovy Engraulis encrasicolus in the Bay of Biscay was determined by direct calorimetry and its evolution with size, age and season was investigated. The water content and energy density varied seasonally following opposite trends. The E D g−1 of wet mass ( M W) was highest at the end of the feeding season (autumn: c . 8 kJ g−1 M W) and lowest in late winter ( c . 6 kJ g−1 M W). In winter, the fish lost mass, which was partially replaced by water, and the energy density decreased. These variations in water content and organic matter content may have implications on the buoyancy of the fish. The water content was the major driver of the energy density variations for a M W basis. A significant linear relationship was established between E D g−1 ( y ) and the per cent dry mass ( M D; x ): y =−4·937 + 0·411 x . In the light of the current literature, this relationship seemed to be not only species specific but also ecosystem specific. Calibration and validation of fish bioenergetics models require energy content measurements on fish samples collected at sea. The present study provides a first reference for the energetics of E. encrasicolus in the Bay of Biscay.  相似文献   

3.
D. ALDRED, N. MAGAN and B.S. LANE.1999.This study investigated the effects of temperature, nutrient status and water activity (aW) on the production of squalestatin S1 by a Phoma sp. The fungus was grown on malt extract (MEA), wheat extract (WEA), oat extract (OEA) and oil seed rape extract (OSREA) agars at 15, 20 and 25 °C and 0·998, 0·995, 0·990, 0·980 and 0·960 aW levels. The growth rate and secondary metabolite formation were followed over a total of 30 d. The maximum growth rate was observed at 25 °C and 0·998–0·990 aW for all media types, which was significantly reduced ( P = 0·05) for most media at 0·96 aw. The growth rate was greatest for WEA and OEA but the growth form was an effuse exploitative type compared with the dense assimilative type on the richer MEA. The lipid-based OSREA appeared to be a poor growth substrate for this fungus. In contrast to the growth rate data, squalestatin S1 production was maximal for all media types at slightly reduced aw in the range 0·990–0·980. There was greater production of the secondary metabolite under significant water stress (0·960 aW) compared with that with freely available water (0·998 aW). Maximum production was observed in WEA. Production began earlier in WEA and OEA compared with MEA. Squalestatin S1 production was not significantly affected by incubation temperature ( P = 0·05). This study has shown that nutritionally depleted substrates may be usefully employed in the production of squalestatin S1 and perhaps also for other secondary metabolites.  相似文献   

4.
The influence of water activity (aw) on the formation of phase bright, heat stable, and dipicoiir.ic acid-containing spores of Bacillus cereus T from stage III to stage IV forespores has beer. investigated. Decreasing aw levels reduced the rate of sporulation and the number of forespores which lysed was determined by the aw-controlling solute used. The limiting aw value for ir.e formation of mature spores was about 0·95 for glucose, sorbitol and NaCl whereas it was about 0·91 for glycerol. The development of refractility. the synthesis of dipicolinic acid, and acquisition of heat stability were affected equally by decrease in aw during sporulation. With the range of aw value where spores could be formed NaCl and glycerol had no signifcant: influence on the D value of the resulting spores whereas at all aw levels, when sorbitol was use: as the aw-controlling solute, the heat resistance was greater than in the basal medium. It Is suggested that the aw of the sporulation medium determines the quantity of spores rather than. the spore properties.  相似文献   

5.
Water relations of solute accumulation in Pseudomonas fluorescens   总被引:2,自引:1,他引:1  
When Pseudomonas fluorescens was grown in a glucose salts medium adjusted with NaCl to a water activity (aw) value of 0.980, the intracellular glutamic acid concentration increased 23-fold and comprised 90% of the total amino acid pool. This increase was not observed when the aw of the medium was reduced to 0.980 with sorbitol. Sorbitol was taken up rapidly over a 30 min period and accumulated intracellularly to a level approximately two-fold greater than the concentration in the growth medium. In continuous culture, the specific rate of glutamic acid production and glucose uptake was greater at 0.980 (NaCl) than at 0.997 aw. The maintenance coefficients for glucose uptake were similar at both aw values but were 2.4-fold greater for glutamic acid production at 0.980 (NaCl) than at 0.997 aw.  相似文献   

6.
Streptomyces cattleya, S. fradiae and S. griseus produced different amounts of growth when cultured sequentially through sporulation, vegetative and antibiotic production media. Only S. griseus grew well on all three types of medium. Streptomyces cattleya grew poorly on both sporulation and vegetative media. Growth was 1·6 and 8·0 mg/1/h respectively. For all three species, biomass yield in the final antibiotic production medium was dependent on amount of inoculum. Antibiotic yields were obtained only from production media. Under slow growth conditions l -cysteine and l -valine supplementation stimulated S. cattleya β-lactam production, giving 1000 μg/ml β-lactam equivalents compared with 45 μg/ml β-lactam equivalents for no supplementation. For aminoglycosides the agar well diffusion bioassay was more sensitive towards the hydrochloride than the neutral salt. Paper chromatography confirmed the main antibiotic classes. R F values for replicate samples indicated aminoglycoside homogeneity and β-lactam heterogeneity.  相似文献   

7.
Escherichia coli shifted from broth at external pH (pH0) 7·0 to pH0 7·0 broth plus glucose rapidly induced marked acid tolerance which also appeared, albeit to a lesser extent, plus maltose, sucrose or lactose. Tolerance appeared without the medium pH becoming acidic. Tolerance was most substantial when glucose was added at pH0 7·0 but was also appreciable at pH0 7·5, 8·0 and 8·5. Induction of tolerance by glucose was markedly reduced by cyclic AMP and essentially abolished plus NaCl or sucrose ; the induction process was also reduced but not fully inhibited by chloramphenicol, tetracycline and nalidixic acid. Glucose-induced organisms showed less acid damage to DNA and β-galactosidase and it is likely that this is because glucose induces a new pH homeostatic mechanism which keeps internal pH close to neutrality at acidic pH0. In conclusion, it is clear that glucose induces a novel acid tolerance response in log-phase E. coli at pH0 7·0 ; it is now known that induction of this response involves the functioning of extracellular induction components including an extracellular induction protein.  相似文献   

8.
S ummary . During growth of Clostridium sporogenes in tryptone-salt-peptone-glucose medium the pH value of the medium varies due to formation of acid and CO2 and to subsequent production of NH3. Glucose concentrations of 0·2, 0·5 or 1·0% result in increasing sporulation times and in spores of low, extremely high ( D 110 c . 80 min) and negligible heat resistance, respectively. When the pH value is maintained at 7, a reproducible sporulation time of a few hours is observed and the resulting spores have a heat resistance ( D 110) of 13 min, regardless of the glucose concentration.  相似文献   

9.
Clostridium pasteurianum fermented glucose to acetate, butyrate, CO2 and H2. In batch cultures the fermentation pattern was only slightly affected by culture pH over the range 8·0 to 5·5. The acetate/butyrate ratio was always higher than or equal to one. Between 2·14 and 2·33 mol H2 was produced per mol glucose fermented. At unregulated pH, more butanol and less butyrate was formed. In a carbon-limited chemostat, the steady-state acetate/butyrate ratio was always lower than one. H2 production was approximately 1·70 mol per mol glucose consumed. Substantial amounts of extracellular protein were formed. With decreasing pH, acetate and formate production decreased, while H2 production was highest at pH 6.0. With increasing dilution rate ( D ), the product spectrum hardly changed, but more biomass was formed. Y glucosemax and Y ATPmax were 55·97 and 31·48 g dry weight per mol glucose or ATP respectively. With increasing glucose input the formation of fatty acids and H2 slightly decreased.
Continuous cultures fermented mannitol to acetate, butyrate, butanol, CO2 and H2. With acetate as co-substrate, butanol production and molar growth yields, Y mannitol and Y ATP, markedly decreased, while the butyrate and H2 production increased. The latter reached a value of 2·21 mol H2 per mol mannitol consumed.  相似文献   

10.
Aims:  To investigate the effect of pH, water activity ( a w) and temperature on the growth of Weissella cibaria DBPZ1006, a lactic acid bacterium isolated from sourdoughs.
Methods and Results:  The kinetics of growth of W. cibaria DBPZ1006 was investigated during batch fermentations as a function of pH (4·0–8·0), a w (0·935–0·994) and temperature (10–45°C) in a rich medium. The growth curve parameters (lag time, growth rate and asymptote) were estimated using the dynamic model of Baranyi and Roberts (1994. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23, 277–294). The effect of pH, a w and temperature on maximum specific growth rate (μmax) were estimated by fitting a cardinal model. μmax under optimal conditions (pH = 6·6, a w = 0·994, T  = 36·3°C) was estimated to be 0·93 h−1. Minimum and maximum estimated pH and temperature for growth were 3·6 and 8·15, and 9·0°C and 47·8°C, respectively, while minimum a w was 0·918 (equivalent to 12·2% w/v NaCl).
Conclusions:  Weissella cibaria DBPZ1006 is a fast-growing heterofermentative strain, which could be used in a mixed starter culture for making bread.
Significance and Impact of the Study:  This is the first study reporting the modelling of the growth of W. cibaria , a species that is increasingly being used as a starter in sourdough and vegetable fermentations.  相似文献   

11.
A significantly higher concentration of testicular spermatozoa was obtained from freshwater Oreochromis mossambicus (9·9×109 spermatozoa ml−1) than seawater O. mossambicus (4·6×109 spermatozoa ml−1). The mean osmolality of the urine of freshwater fish (78·5 mOsmol kg−1) was significantly different from that of seawater fish (304·8 mOsmol kg−1). The mean length of the mid-piece of the spermatozoa together with the tail was more variable in freshwater O. mossambicus (8·80±0·23μm) than in seawater specimens (8·27±0·18 μm). Stripped sperm of freshwater O. mossambicus was highly contaminated by urine which was a good activator of sperm motility in O. mossambicus held in both fresh and sea water. The osmolality for initiation of motility in freshwater O. mossambicus spermatozoa was from 0 to 333 mOsmol kg−1 while for seawater O. mossambicus spermatozoa it was from 0 to 1022 mOsmol kg−1. The optimum osmolality for motility was from 70 to 333 mOsmol kg−1 for freshwater O. mossambicus spermatozoa and from 333 to 645 mOsmol kg−1 for seawater fish. In freshwater O. mossambicus spermatozoa, the presence of 20 mM CaCl2 increased the permissive osmolality of NaCl from 184 to 645 mOsmol kg−1. For seawater O. mossambicus spermatozoa, solutions of NaCl devoid of CaCl2 were unable initiate motility, but the addition of 1·5 to 30 mM CaCl2 to the NaCl solution (0–934 mOsmol kg1) had a full motility initiating effect.  相似文献   

12.
The growth of a strain of Rhizobium trifolii and of R. meliloti was studied in broth and peat cultures to determine the relative toxicity of Na+ and Cl-. The following salts were added in a range of concentrations: Na2HPO4 as a source of Na+, CaCl2.2H2O as a source of Cl-, and NaCl. Disodium hydrogen orthophosphate affected the growth rate of both strains in broth culture but not in peat culture. Unexpectedly, calcium chloride was more toxic than NaCl in broth and peat culture. The toxicity of NaCl can be ascribed to the Cl-. Rhizobium meliloti strains grew on 3·5% NaCl after adaptation during a long period. Rhizobia for soya bean and cowpea grew at 0·5% NaCl and those for clover and pea, at 1·0% NaCl.  相似文献   

13.
The Sr/Ca ratios in otoliths of silver Japanese eels Anguilla japonica , in Pearl River, China, indicated that both sexes did not stay in brackish water and grew in fresh water from the glass eel stage until spawning migration. This did not support the hypothesis that females tended to distribute upstream and males might be restricted to estuaries. The back-calculated total length of males at glass eel stage was not significantly different from that of females, indicating that the hypothesis that small glass eels became males and larger ones became females may not be true. The mean (±S.D.) age and total length of males at migration were 6·4±1·6 years and 48·3±4·5 cm, which were significantly smaller than for females, 8·3±1·6 years and 61·4±4·1 cm. The age of migration was related inversely to growth rate for both sexes. Growth parameters of the von Bertalanffy growth equation were K =0·21 cm year°1, L =55·7 cm and t o=-0·55 year for males and K =0·14 cm year−1, L =77·5 cm and t o=-0·60 year for females. The difference in asymptotic length ( L ) between males and females may be because females postpone migration to achieve larger size for maximizing reproductive success.  相似文献   

14.
Growth performance of a high latitude (Norway) population of juvenile turbot Scophthalmus maximus , was superior to that of two other lower latitude populations (Scotland, France) especially at 18° and 22° C. Overall these results lend some support to the hypothesis of countergradient variation in growth. The Norwegian population had the highest estimated temperature optimum for growth ( T opt.G, ±S.E.) (23·0±0·9°C) and food conversion efficiency ( T opt.Ec) (17·5±0·3), followed by the French ( T opt.G 21·1±1·0; T opt.Ec, 16·7±0·1) population, whereas the Scottish population had the lowest optimum ( T opt.G, 19·6±0·6; T opt Ec, 16·5±0·1°C). These results have two major implications: firstly, for turbot culture, particularly in selection work focusing on growth performance; secondly, if countergradient variation in growth performance takes place within a species one cannot assume automatically that one set of physiological parameters, in this case growth-related parameters, is satisfactory to predict growth for a species throughout its range as different populations might show a difference in response towards different physiological parameters.  相似文献   

15.
Aim:  To evaluate the influence of water activity ( a w), temperature and pH on the radial growth and lag phase of Physisporinus vitreus (E-642), a basidiomycete was used in the biotechnological process of bioincising.
Methods and Results:  Radial growth was monitored for 20 days on malt extract agar medium. Five levels of a w (0·998, 0·982, 0·955, 0·928, 0·892) were combined with three incubation temperatures (10, 15, 20°C) and three pH values (4, 5, 6). Data analyses showed a highly significant effect of a w and temperature ( P <  0·0001) and a significant effect of pH ( P <  0·05). The radial growth rate and lag phase of P. vitreus were very sensitive to a w reduction. Although P. vitreus was able to grow at all the selected temperatures and pH values, the lag phase increased with decreasing a w and growth became inhibited at a w = 0·955. Optimal conditions for growth of P. vitreus were a w = 0·998, 20°C and pH 5. The response surface model provided reliable estimates of these growth parameters and confirmed a greater dependence on a w than on temperature or pH under in vitro conditions.
Conclusions:  Low levels of a w can prevent growth of P. vitreus , so wood moisture content should be adjusted accordingly.
Significance and Impact of the Study:  Implementation of these results should contribute towards the optimization and efficiency of bioincising.  相似文献   

16.
Aims:  The objective of this study is to develop kinetic models based on batch experiments describing the growth, CO2 consumption, and H2 production of Anabaena variabilis ATCC 29413-UTM as functions of irradiance and CO2 concentration.
Methods and Results:  A parametric experimental study is performed for irradiances from 1120 to 16100 lux and for initial CO2 mole fractions from 0·03 to 0·20 in argon at pH 7·0 ± 0·4 with nitrate in the medium. Kinetic models are successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale.
Conclusions:  Monod models predict the growth, CO2 consumption and O2 production within 30%. Moreover, the CO2 consumption half-time is an appropriate time scale for analysing all experimental data. In addition, the optimum initial CO2 mole fraction is 0·05 for maximum growth and CO2 consumption rates. Finally, the saturation irradiance is determined to be 5170 lux for CO2 consumption and growth whereas, the maximum H2 production rate occurs around 10 000 lux.
Significance and Impact of the Study:  The study presents kinetic models predicting the growth, CO2 consumption and H2 production of A. variabilis . The experimental and scaling analysis methods can be generalized to other micro-organisms.  相似文献   

17.
G. Huang    L. Wei    X. Zhang  † T. Gao   《Journal of fish biology》2008,72(10):2534-2542
The compensatory growth of juvenile brown flounder Paralichthys olivaceus (body mass c. 12 g) following different thermal exposure was investigated. Fish were exposed to one of the five temperatures: 8·5 ( T 8·5), 13·0 ( T 13·0), 17·5 ( T 17·5), 22·0 ( T 22·0) and 26·5° C ( T 26·5) for 10 days and fish grew best at 22·0° C. Then the water temperature in all treatments was equably adjusted to 22·0° C over 3 days. At the end of the following 30 days after temperature adjustment, there were no significant differences between body masses of fish in the different treatments (wet body mass at the end of the experiment ranged from 22·13 to 24·56 g). Results indicated that the juvenile P. olivaceus achieved complete compensatory growth. Analysis of the dynamics of the feeding rates and feed conversion efficiencies indicated that compensatory growth of the fish experienced low temperature ( T 8·5, T 13·5 and T 17·5) or high temperature ( T 26·5) exposure was mainly dependent on increasing feed intake (hyperphagia) and possibly by improvement in feed conversion efficiency. The moisture content was not affected by different temperature exposure significantly. The lipid and energy content of juvenile P. olivaceus in T 8·5, however, were significantly lower than other treatment. Results of the current study indicate that a short period of low or high temperature exposure may not affect annual growth, but may affect lipid and energy deposition.  相似文献   

18.
The von Bertalanffy growth parameters for common wolf–fish Anarhichas lupus in the North Sea were: male: L ∞=111·2 cm, t 0=–0·43 and K =0·12; and female: L ∞=115·1 cm, t 0=–0·39 and K =0·11, making this the fastest growing stock reported. Resting metabolic rates (RMR±S.E.) and maximum metabolic rates (MMR±S.E.) for six adult common wolf–fish (mean weight, 1·39 kg) at 5° C were 12·18±1·6 mg O2 kg–1 h–1 and 70·65±7·63 mg O2 kg–1 h–1 respectively, and at 10° C were 25·43±1·31 mg O2 kg–1 h–1 and 113·84±16·26 mg O2 kg–1 h–1. Absolute metabolic scope was 53% greater at 10° C than at 5° C. The diet was dominated by Decapoda (39% overall by relative occurrence), Bivalvia (20%) and Gastropoda (12%). Sea urchins, typically of low energy value, occupied only 7% of the diet. The fast growth probably resulted from summer temperatures approximating to the optimum for food processing and growth, but may have been influenced by diet, and reduced competition following high fishing intensity.  相似文献   

19.
Reproductive investment in the Silurus meridionalis   总被引:3,自引:0,他引:3  
A comparison of pre- and postspawning Silurus meridionalis showed that 20·7% of body stored energy was utilized during spawning for a standard male (74·5 cm) and 23·8% for a standard female (85·3 cm). About one-third of the loss of the stored energy was released as eggs by females, and almost all of the energy loss for males and about two-thirds for females were expended in metabolism. Stored lipid as fuel for metabolism supplied 90·0% of energy in males and 95·2% in females, and protein supplied the rest of the energy. Models for predicting energy in released gametes ( G g), deposited in the body as somatic growth ( G s), utilized in spawning activity ( S a), expended in maintenance ( M , including metabolism, faeces and excretion), and food energy ( C ) were developed, and annual energy budgets were compiled. The balanced budget for a male aged 4 was: 100 C =0·06 G g+11·17 S a+19·5 G s+69·2 M , and for a female aged 5: 100 C =5·48 G g+8·51 S a+15·8 G s+70·2 M .  相似文献   

20.
Aim:  To investigate the effects of feeding and induction strategies on the production of Bm R1 recombinant antigen.
Methods and Results:  Fed-batch fermentation was studied with respect to the specific growth rate and mode of induction to assess the growth potential of the bacteria in a bioreactor and to produce high yield of Bm R1 recombinant antigen. Cells were grown at a controlled specific growth rate (μset) during pre-induction, followed by constant feeding postinduction. The highest biomass (24·3 g l−1) was obtained during fed-batch process operated at μset of 0·15 h−1, whereby lower μset (0·075 h−1) gave the highest protein production (9·82 mg l−1). The yield of Bm R1 was increased by 1·2-fold upon induction with 1 mmol l−1 IPTG (isopropyl-β- d -thiogalactoside) compared to using 5 mmol l−1 and showed a further 3·5-fold increase when the culture was induced twice at the late log phase.
Conclusions:  Combination of feeding at a lower μset and twice induction with 1 mmol l−1 IPTG yielded the best result of all variables tested, promising an improved method for Bm R1 production .
Significance and Impact of the Study:  This method can be used to increase the production scale of the Bm R1 recombinant antigen to meet the increasing demand for Brugia Rapid, a commercial diagnostic test for detection of brugian filariasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号