首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

2.
MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis   总被引:1,自引:0,他引:1  
Cadmium (Cd) may be accumulated in human body through long-term exposure to Cd-polluted environment, resulting in neurodegeneration and other diseases. To study the mechanism of Cd-induced neurodegeneration, PC12 and SH-SY5Y cells were exposed to Cd. We observed that Cd-induced apoptosis in the cells in a time- and concentration-dependent manner. Cd rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c -Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2 and JNK, but not p38, partially protected the cells from Cd-induced apoptosis. Consistently, over-expression of dominant negative c- Jun or down-regulation of Erk1/2, but not p38 MAPK, partially prevented Cd-induced apoptosis. To our surprise, Cd also activated mammalian target of rapamycin (mTOR)-mediated signaling pathways. Treatment with rapamycin, an mTOR inhibitor, blocked Cd-induced phosphorylation of S6K1 and eukaryotic initiation factor 4E binding protein 1, and markedly inhibited Cd-induced apoptosis. Down-regulation of mTOR by RNA interference also in part, rescued cells from Cd-induced death. These findings indicate that activation of the signaling network of MAPK and mTOR is associated with Cd-induced neuronal apoptosis. Our results strongly suggest that inhibitors of MAPK and mTOR may have a potential for prevention of Cd-induced neurodegeneration.  相似文献   

3.
Mitogen‐activated protein kinases (MAPKs) cascades play important roles in cell proliferation, death, and differentiation in response to external stimuli. However, the precise role of MAPKs in platycodin D (PD)‐induced cytotoxicity remains unclear. In this study, we investigated the anticancer effect of PD and its underlying mechanism on AGS human gastric cancer cells. PD significantly inhibited cell proliferation and induced anoikis, which is a form of apoptosis in which cells detach from the substrate. It showed phosphatidylserine externalization, DNA fragmentation, increase of sub‐G1 phase, and activation of caspases in a dose‐ and time‐dependent manner. This apoptosis has been associated with the extrinsic pathway via Fas‐L and the intrinsic pathway via mitochondrial Bcl‐2 family members. Moreover, PD led to the phosphorylation of stresses‐activated protein kinases such as JNK and p38, followed by the activation of AP‐1. However, pretreatment with SB203580 (a p38 specific inhibitor) suppressed PD‐induced p38 and AP‐1 activation, and subsequently attenuated the PD‐induced apoptosis in AGS cells. These results suggest that p38 activation is responsible for PD‐induced apoptosis in AGS cells and PD might be useful for the development as the anticancer agent of gastric cancer. J. Cell. Biochem. 114: 456–470, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

5.
Cepharanthine (CEP), a biscoclaurine alkaloid, has been reported to induce cell death, however, the molecular mechanism of this phenomenon remains unclear. We herein report that CEP induced apoptosis in HuH-7 cells through nuclear fragmentation, DNA ladder formation, cytochrome c release, caspase-3 activation and poly-(ADP-ribose)-polymerase cleavage. CEP triggered the generation of reactive oxygen intermediates, the activation of mitogen activated protein kinase (MAPK) p38, JNK1/2 and p44/42, and the downregulation of protein kinase B/Akt. Antioxidants and SP600125, an inhibitor of JNK1/2, but not inhibitors of p38 MAPK and MEK1/2, significantly prevented cell death, thus implying that reactive oxygen species and JNK1/2 play crucial roles in the CEP-induced apoptosis of HuH-7 cells.  相似文献   

6.
6-hydroxydopamine (6-OHDA)-induced apoptosis in dopaminergic neuronal cells is a common cell model of Parkinson's disease (PD). The role of apoptosis signal-regulating kinase 1 (ASK1) in this model has not been well studied. We observed significant activation of ASK1, p38 and JNK, as well as apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells exposed to 6-OHDA. Over-expressing kinase-dead mutant ASK1(K709M) or knock-down of endogenous ASK1 by its small interfering RNA (siRNA) greatly suppressed activation of these kinases and apoptosis in the cells. It was found that the activation of p38 and JNK was suppressed to almost the same extent as that of ASK1 in the ASK1-knock-down cells, suggesting that activated ASK1 is almost totally responsible for activation of p38/JNK. It was also observed that the 6-OHDA-induced cell apoptosis could be effectively prevented by over-expressing the dominant-negative mutant of p38 or p38 inhibitor SB203580, demonstrating that activation of p38/JNK signalling is required for initiating the programmed cell death. Furthermore, suppression of the 6-OHDA-generated reactive oxygen species (ROS) by pre-incubation of cells with N-acetyl-L-cysteine effectively inhibited the 6-OHDA-induced activation of ASK1, p38 and JNK, and protected the cells from apoptosis. This study clearly shows the route from ROS generation by 6-OHDA to initiation of p38/JNK signalling via activation of ASK1 in the studied PD model.  相似文献   

7.
Prostate cancer is the second most common cause of death related to cancer in Western society. 2-Methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17beta, inhibits tumor angiogenesis while also exerting potent cytotoxic effects on various cancer cells. 2-ME has been shown to activate the p38 MAPK and JNK pathways and to induce apoptosis in cells, although the underlying molecular mechanisms for this are unknown. Here we report that the expression of Smad7, an adaptor molecule required to activate p38 MAPK in the transforming growth factor beta signaling pathway, is also required for 2-ME-induced p38 activation and apoptosis in human prostate cancer cells (PC-3U). PC-3U/AS-S7 cells stably transfected with an antisense Smad7 construct, or PC-3U cells transiently transfected with short interfering RNA for Smad7, were protected against 2-ME-induced apoptosis. 2-ME-induced apoptosis was found to involve p38 MAPK and JNK, because simultaneous treatments with 2-ME and a specific p38 inhibitor (SB203580) or an inhibitor of JNK (L-JNK1) prevented 2-ME-induced apoptosis. Most interestingly, Smad7 was shown by both antisense and short interfering RNA techniques to affect levels of beta-catenin, which has been implicated previously in the regulation of apoptosis. Moreover, Smad7 was found to be important for the basal expression of Bim, a pro-apoptotic Bcl-2 family member, and for 2-ME-induced expression of Bim. These results suggest that expression of Smad7 is crucial for 2-ME-induced apoptosis in human prostate cancer cells.  相似文献   

8.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

9.
The gastric pathogen Helicobacter pylori (H. pylori) is suggested to be associated with gastric cancer progression. In this study, we investigated the effect of H. pylori on urokinase plasminogen activator receptor (uPAR) expression which has been known to correlate closely with gastric cancer invasion. H. pylori induced the uPAR expression in a time- and concentration-dependent manner. Specific inhibitors and inactive mutants of MEK-1 and JNK were found to suppress the H. pylori-induced uPAR expression and the uPAR promoter activity. Electrophoretic mobility shift assay and transient transfection study using an AP-1 decoy oligonucleotide confirmed that the activation of AP-1 is involved in the H. pylori-induced uPAR upregulation. The AGS cells treated with H. pylori showed a remarkably enhanced invasiveness, and this effect was partially abrogated by uPAR-neutralizing antibodies. These results suggest that H. pylori induces uPAR expression via Erk-1/2, JNK, and AP-1 signaling pathways and, in turn, stimulates the cell invasiveness in human gastric cancer AGS cells.  相似文献   

10.
Here we show that several cell signaling inhibitors have effect on cyp1a1 expression and the metabolism of benzo[a]pyrene (B[a]P) in Hepa1c1c7 cells. The CYP1A1 inhibitor alpha-naphthoflavone (alpha-NF), the p53 inhibitor pifithrin-alpha (PFT-alpha), the ERK inhibitors PD98059 and U0126, and the p38 MAPK inhibitors SB202190 and PD169316 induced the expression and level of cyp1a1 protein. On the other hand, during the first h the inhibitors appeared to reduce the metabolism of B[a]P as measured by the generation of tetrols and by covalent binding of B[a]P to macromolecules. In contrast, the phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin, had neither an effect on the cyp1a1 expression nor the B[a]P-metabolism. In order to avoid these unspecific effects, we characterized the mechanisms involved in the apoptotic effects of B[a]P-metabolites. B[a]P and the B[a]P-metabolites B[a]P-7,8-DHD and BPDE-I induced apoptosis, whereas B[a]P-4,5-DHD had no effect. B[a]P, B[a]P-7,8-DHD and BPDE-I induced an accumulation and phosphorylation of p53, while the Bcl-2 proteins Bcl-xl, Bad and Bid were down-regulated. Interestingly, the levels of anti-apoptotic phospho-Bad were up-regulated in response to B[a]P as well as to B[a]P-7,8-DHD and BPDE-I. Both p38 MAPK and JNK were activated, but the p38 MAPK inhibitors were not able to inhibit BPDE-I-induced apoptosis. PFT-alpha reduced the BPDE-I-induced apoptosis, while both the PI-3 kinase inhibitor and the ERK inhibitors increased the apoptosis in combination with BPDE-I. BPDE-I also triggered apoptosis in primary cultures of rat lung cells. In conclusion, often used cell signaling inhibitors both enhanced the expression and the level of cyp1a1 and more directly acted as inhibitors of cyp1a1 metabolism of B[a]P. However, studies with the B[a]P-metabolite BPDE-I supported the previous suggestion that p53 has a role in the pro-apoptotic signaling pathway induced by B[a]P. Furthermore, these studies also show that the reactive metabolites of B[a]P induce the anti-apoptotic signals, Akt and ERK. Neither the induction nor the activity of p38 MAPK and JNK seems to be of major importance for the B[a]P-induced apoptosis.  相似文献   

11.
The aim of this study was to determine whether the Helicobacter pylori-derived sphigomyelinase (SMase) affects the sphingomyelin pathway and growth in AGS epithelial cells. We showed that the exogenous SMase increased the intracellular level of ceramide in AGS cells and led to rapid stimulation of extracellular signal-regulated kinase (ERK) and c-Jun kinase (JNK) activities. Incubation of AGS cells with H. pylori-derived SMase also resulted in suppression of cell growth and a concomitant induction of apoptosis. Data showed that PD98059 (up to 50 microM), an ERK inhibitor, did not affect the cell viability, whereas the cytotoxicity of exogenous SMase was completely blocked by SP600125, a JNK inhibitor at a concentration of 210 nM. We conclude that the activation of the mitogen-activated protein (MAP) kinases in AGS cells by exogenous H. pylori SMase is a major pathway to mediate the cytotoxicity.  相似文献   

12.
《Phytomedicine》2015,22(2):256-261
Saururus chinensis (SC) Baill. (Saururaceae), a perennial herb commonly called Chinese lizard's tail or Sam-baekcho in Korea, has been used in the treatment of edema, gonorrhea, jaundice, and inflammatory diseases. Recently, several reports have been commissioned to examine the anti-cancer activities of this plant. In this study, we evaluated the inhibitory activity and mechanism of action on SC and its components against stomach cancer cells. SC extracts displayed cytotoxic effects on AGS cells in a dose-dependent manner. Moreover, SC increased the number of annexin V-positive apoptotic bodies and phosphorylated JNK and p38 in AGS cells. SC also down-regulated anti-apoptotic (Bcl-2) genes and up-regulated apoptotic (Bax) genes in AGS cells. We further confirmed that caspase activation plays an important role in SC-induced apoptosis in AGS cells. Furthermore, we examined erythro-Austrobailignan-6 and meso-dihydroguaiaretic acid, major active constituents of SC, which induced apoptosis in both the AGS and NCI-N87 stomach cancer cell lines. Taken together, our data provide the evidence that SC and its components induce apoptosis in stomach cancer cells, making it a potential candidate as a chemotherapeutic drug.  相似文献   

13.
14.
Colorectal cancer is the second most common cause of cancer death in the world and about half of the patients with colorectal cancer require adjuvant therapy after surgical resection. Therefore, the eradication of cancer cells via chemotherapy constitutes a viable approach to treating patients with colorectal cancer. In this study, the effects of bufalin isolated from a traditional Chinese medicine were evaluated and characterized in HT-29 and Caco-2 human colon cancer cells. Contrary to its well-documented apoptosis-promoting activity in other cancer cells, bufalin did not cause caspase-dependent cell death in colon cancer cells, as indicated by the absence of significant early apoptosis as well as poly(ADP-ribose) polymerase and caspase-3 cleavage. Instead, bufalin activated an autophagy pathway, as characterized by the accumulation of LC3-II and the stimulation of autophagic flux. The induction of autophagy by bufalin was linked to the generation of reactive oxygen species (ROS). ROS activated autophagy via the c-Jun NH2-terminal kinase (JNK). JNK activation increased expression of ATG5 and Beclin-1. ROS antioxidants (N-acetylcysteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA attenuated bufalin-induced autophagy. Our findings unveil a novel mechanism of drug action by bufalin in colon cancer cells and open up the possibility of treating colorectal cancer through a ROS-dependent autophagy pathway.  相似文献   

15.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and is also highly resistant to conventional chemotherapy treatments. In this study, we report that Longikaurin A (LK-A), an ent-kaurane diterpenoid isolated from the plant Isodon ternifolius, induced cell cycle arrest and apoptosis in human HCC cell lines. LK-A also suppressed tumor growth in SMMC-7721 xenograft models, without inducing any notable major organ-related toxicity. LK-A treatment led to reduced expression of the proto-oncogene S phase kinase-associated protein 2 (Skp2) in SMMC-7721 cells. Lower Skp2 levels correlated with increased expression of p21 and p-cdc2 (Try15), and a corresponding decrease in protein levels of Cyclin B1 and cdc2. Overexpression of Skp2 significantly inhibited LK-A-induced cell cycle arrest in SMMC-7721 cells, suggesting that LK-A may target Skp2 to arrest cells at the G2/M phase. LK-A also induced reactive oxygen species (ROS) production and apoptosis in SMMC-7721 cells. LK-A induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase and P38 MAP kinase. Treatment with, the JNK inhibitor SP600125 prevented LK-A-induced apoptosis in SMMC-7721 cells. Moreover, the antioxidant N-acetylcysteine prevented phosphorylation of both JNK and c-Jun. Taken together, these data indicate that LK-A induces cell cycle arrest and apoptosis in cancer cells by dampening Skp2 expression, and thereby activating the ROS/JNK/c-Jun signaling pathways. LK-A is therefore a potential lead compound for development of antitumor drugs targeting HCC.  相似文献   

16.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

17.
In many cases, the process of cancer cell differentiation is associated with the programmed cell death. In the present study, interestingly, we found that eupatilin, one of the pharmacologically active ingredients of Artemisia asiatica that has been reported to induce apoptosis in human gastric cancer AGS cells, also triggers differentiation of these cells. Treatment of AGS cells with eupatilin induced cell cycle arrest at the G1 phase with the concomitant induction of p21cip1, a cell cycle inhibitor. This led us to test whether eupatilin may trigger AGS cells to differentiate into the matured phenotypes of epithelial cells and this phenomenon may be coupled to the apoptosis. Eupatilin induced changes of AGS cells to a more flattened morphology with increased cell size, granularity, and mitochondrial mass. It also markedly induced trefoil factor 1 (TFF1), a gene responsible for the gastrointestinal cell differentiation. Eupatilin dramatically induced redistribution of tight junction proteins such as occludin and ZO-1, and F-actin at the junctional region between cells. It also induced phosphorylation of extracellular signal-regulated kinase 2 and p38 kinase. Blockade of ERK signaling by PD098059 or the dominant-negative ERK2 significantly reduced eupatilin-induced TFF1 and p21 expression as well as ZO-1 redistribution, indicating that ERK cascades may mediate eupatilin-induced AGS cell differentiation. Collectively, our results suggest that eupatilin acts as a novel anti-tumor agent by inducing differentiation of gastrointestinal cancer cells rather than its direct role in inducing apoptotic cell death.  相似文献   

18.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

19.
We report that Aplidin, a novel antitumor agent of marine origin presently undergoing Phase II clinical trials, induced growth arrest and apoptosis in human MDA-MB-231 breast cancer cells at nanomolar concentrations. Aplidin induced a specific cellular stress response program, including sustained activation of the epidermal growth factor receptor (EGFR), the non-receptor protein-tyrosine kinase Src, and the serine/threonine kinases JNK and p38 MAPK. Aplidin-induced apoptosis was only partially blocked by the general caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone and was also sensitive to AG1478 (an EGFR inhibitor), PP2 (an Src inhibitor), and SB203580 (an inhibitor of JNK and p38 MAPK) in MDA-MB-231 cells. Supporting a role for EGFR in Aplidin action, EGFR-deficient mouse embryo fibroblasts underwent apoptosis upon treatment more slowly than wild-type EGFR fibroblasts and also showed delayed JNK and reduced p38 MAPK activation. N-Acetylcysteine and ebselen (but not other antioxidants such as diphenyleneiodonium, Tiron, catalase, ascorbic acid, and vitamin E) reduced EGFR activation by Aplidin. N-Acetylcysteine and PP2 also partially inhibited JNK and p38 MAPK activation. The intracellular level of GSH affected Aplidin action; pretreatment of cells with GSH or N-acetylcysteine inhibited, whereas GSH depletion caused, hyperinduction of EGFR, Src, JNK, and p38 MAPK. Remarkably, Aplidin also induced apoptosis and activated EGFR, JNK, and p38 MAPK in two cell lines (A-498 and ACHN) derived from human renal cancer, a neoplasia that is highly refractory to chemotherapy. These data provide a molecular basis for the anticancer activity of Aplidin.  相似文献   

20.
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号