首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subcellular fractionation of rat liver by differential centrifugation showed the mitochondrial fractions to have the greatest enrichment of 'peripheral-type' benzodiazepine acceptor. Two peaks of acceptor sites were found on isopycnic density-gradient centrifugation, one peak (rho = 1.19 g/ml) corresponding to the peak of mitochondria as judged by marker enzyme distribution and by transmission electron microscopy, and the other peak (rho = 1.17 g/ml) which is not mitochondrial as judged by the lack of mitochondrial enzyme markers. Whereas the density of the mitochondrial acceptor was sensitive to sonication and was shown to have an outer-membrane location, the density of the non-mitochondrial acceptor was insensitive to sonication. The non-mitochondrial acceptor was shown not to be associated with Golgi, lysosomes, rough endoplasmic reticular microsomes, peroxisomes, or some types of plasma membranes, as judged by differences in the distribution of marker activities. No enrichment of benzodiazepine acceptor was found in the purified nuclear fraction. Both acceptors were shown to be peripheral-type high-affinity acceptors as judged by ligand specificities and by photoaffinity labelling.  相似文献   

2.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

3.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

4.
The acceptor products of maltose with Leuconostoc mesenteroides B-512FM dextransucrase are panose (6(2)-alpha-D-glucopyranosyl maltose) and a homologous series of 6(2)-isomaltodextrinosyl maltoses. The structures of the acceptor products of dextransucrase with other maltodextrins, maltotriose to maltooctaose (G3-G8), were determined by using the known specificities of alpha-glucosidase and porcine pancreatic alpha-amylase, and by methylation analysis. It has been found that dextransucrase transfers a D-glucopyranosyl residue to C-6 of either the nonreducing end or the reducing end residues of the maltodextrins, G3-G8, forming an alpha(1----6) linkage. When a D-glucose was transferred to the nonreducing residue, the first product was also an acceptor to give the second product, which served as an acceptor to give the third product, etc. to give a homologous series. When D-glucose was transferred to the reducing residue, the first product did not readily serve as an acceptor to give products or it served only as a very poor acceptor to give a small amount of the next homologue. The effectiveness of maltodextrins as acceptors decreased as the size of the maltodextrin chain increased. Maltotriose was 40% as effective as maltose and maltooctaose was only 6% as effective.  相似文献   

5.
【目的】探究化能自养硫氧化细菌Halothiobacillus sp. LS2介导的以乙炔为电子受体的厌氧硫氧化反应。【方法】稀释涂布法测定细胞生长情况,离子色谱仪测试硫氧化动力学中SO_4~(2–)和S_2O_3~(2–)以及基于相对荧光定量法的基因表达分析。【结果】尽管菌株LS2在以氧气为电子受体时的最大反应速率V_(max)更高,但在厌氧条件下且以乙炔为电子受体时,菌株LS2的生长量是氧气为电子受体时的2倍,且硫氧化酶基因soxB的表达量显著高于氧气作为电子受体时。【结论】菌株LS2不仅可以以乙炔为电子受体完成厌氧硫氧化反应,且这一代谢过程的产能效率较有氧硫氧化过程更高。本研究首次发现了微生物介导的以乙炔为电子受体的厌氧硫氧化反应,对丰富硫的生物地球化学循环理论有积极意义。  相似文献   

6.
Abstract— The catalytic activity of γ-glutamyl transpeptidase (γ-GTP) from bovine choroid plexus has been shown to be subject to modulation by a variety of effectors. L-Alanine and L-serine not only functioned as acceptor substrates to which γ-glutamyl moieties could be transferred, but also as noncom-petitive inhibitors of the reaction in the presence of the dipeptide acceptor substrate glycylglycine. In contrast, D-alanine does not function as an acceptor substrate, but does noncompetitively inhibit the transfer of γ-glutamyl groups to glycylglycine. Similarly, borate ions inhibited y-GTP noncompetitively, while a mixture of L-serine and borate were potent uncompetitive inhibitors of the reaction with a K i of 0.6 mM. Several dicarboxylic acids, including maleate, maleylglycine, and malonate, inhibited γ-GTP; this inhibition was acceptor substrate-dependent. The inhibition of γ-GTP by maleate was competitive with respect to the acceptor substrate glycylglycine.  相似文献   

7.
Glucooligosaccharides (GOS) were produced by using an acceptor reaction with two types of glucansucrase (GTF-S and GTF-I) from Streptococcus sobrinus. Acceptor reactions of GTF-S with maltose acceptor, gave a great number of GOS ranging from DP(degree of polymerization) 2 to DP15. At the both acceptor reactions with GTF-S or GTF-I, as the sucrose/maltose ratio was decreased, the amount of dextran and DP of oligosaccharides was decreased. A maximum GOS yield of 69% was achieved at the acceptor reaction with GTF-I and when the molar ratio of sucrose/maltose is 2:1, in which GOS of DP6~DP9 were major oligosaccharides and 17% of dextran. The polymeric size of GOS could be controlled by varying the ratio of sucrose to the acceptor (maltose in this work).  相似文献   

8.
Cells nonproductively transformed by a variant of the Snyder-Theilen strain of feline sarcoma virus (FeSV) expressed an 85,000-dalton polyprotein (P85) with associated tyrosine-specific protein kinase activity. We identified within this polyprotein a single tyrosine acceptor site for its enzyme activity. This acceptor site, as well as two serine phosphorylation sites localized with the p12 structural component of Snyder-Theilen FeSv P85, was phosphorylated in cells nonproductively transformed by Snyder-Theilen FeSv. In contrast, infection by Snyder-Theilen FeSV transformation-defective mutants resulted in phosphorylation only of the two serine acceptor sites, indicating phosphorylation of the tyrosine acceptor site to be transformation specific. In addition, we describe in vitro labeling conditions, using unfractionated cell extracts, which resulted in preferential phosphorylation of the single Snyder-Theilen FeSV tyrosine-specific acceptor site.  相似文献   

9.
Microbially influenced corrosion (MIC) is catalysed by a series of metabolic activities of selected micro-organisms, notably by oxidation of cathodic hydrogen by hydrogenase, by hydrogen sulphide and by reduction of ferric iron. The sulphate-reducing bacteria are considered to be the most common catalyst of MIC, whereas the role of other bacteria has been neglected. This study examined the corrosive potential of the facultative sulphide producer, Shewanella putrefaciens , isolated from an industrial cooling water system. Shewanella putrefaciens was shown to reduce ferric iron and sulphite under anaerobic conditions and with ferric iron being the preferred electron acceptor. The isolate could utilize cathodic hydrogen as an energy source, especially when using sulphite as a terminal electron acceptor. In pure culture corrosion experiments, the highest mass loss of mild steel was observed in the presence of sulphite as sole electron acceptor, although mass loss was also detected where ferric iron was the sole electron acceptor. Our data indicate that S. putefaciens plays a role in MIC as it was able to catalyse a variety of corrosion-promoting reactions and to corrode mild steel under pure culture conditions.  相似文献   

10.
The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles (20-nm diameter) and large, unilamellar acceptor vesicles (70-nm diameter) were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [14C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. When viewed within the context of other recent studies involving neutral glycosphingolipids, these findings provide additional evidence for the existence of microscopic, glycosphingolipid-enriched domains within the phospholipid bilayer.  相似文献   

11.
A sulfurtransferase has been purified to apparent homogeneity from the prokaryote Acinetobacter calcoaceticus lwoffi by conventional protein fractionation techniques. Steady-state kinetic studies of the enzyme revealed that its formal mechanism varies with the acceptor substrate employed. With inorganic thiosulfate as the sulfane sulfur-donor substrate and cyanide anion as the acceptor, the enzyme was shown to catalyze the reaction by a double displacement mechanism like that of mammalian rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). In contrast, with a thiol as the acceptor substrate at relatively high concentrations, the reaction proceeds by a single displacement mechanism, reminiscent of catalysis by another sulfur-transferase, thiosulfate reductase, glutathione-dependent (EC 2.8.1.3). When dithiothreitol is the acceptor substrate, the enzyme cycles through both the single and double displacement pathways, with the flux through each depending differentially on the concentration of dithiothreitol employed. In view of both the relaxed acceptor substrate specificity and the corresponding variability of formal mechanism, the more general name of sulfane sulfurtransferase is proposed for this bacterial enzyme.  相似文献   

12.
We demonstrate theoretically and experimentally the quantification of Förster resonance energy transfer (FRET) by direct and systematic saturation of the excited state of acceptor molecules. This version of acceptor depletion methods for FRET estimation, denoted as “satFRET” is reversible and suitable for time-resolved measurements. The technique was investigated theoretically using the steady-state solution of the differential equation system of donor and acceptor molecular states. The influence of acceptor photobleaching during measurement was included in the model. Experimental verification was achieved with the FRET-pair Alexa 546- Alexa 633 loaded on particles in different stoichiometries and measured in a confocal microscope. Estimates of energy transfer efficiency by excited state saturation were compared to those obtained by measurements of sensitised emission and acceptor photobleaching. The results lead to a protocol that allows time-resolved FRET measurements of fixed and living cells on a conventional confocal microscope. This procedure was applied to fixed Chinese hamster ovary cells containing a cyan fluorescent protein and yellow fluorescent protein pair. The time resolution of the technique was demonstrated in a live T cell activation assay comparing the FRET efficiencies measured using a genetically encoded green and red fluorescent protein biosensor for GTP/GDP turnover to those measured by acceptor photobleaching of fixed cells.  相似文献   

13.
Abstract

Glucansucrases (GTFs) catalyzes the synthesis of α-glucans from sucrose and oligosaccharides in the presence of an acceptor sugar by transferring glucosyl units to the acceptor molecule with different linkages. The acceptor reactions can be affected by several parameters and this study aimed to determine the optimal reaction parameters for the production of glucansucrase-based oligosaccharides using sucrose and maltose as the donor and acceptor sugars, respectively via a hybrid technique of Response Surface Method (RSM) and Particle Swarm Optimization (PSO). The experimental design was performed using Central Composite Design and the tested parameters were enzyme concentration, acceptor:donor ratio and the reaction period. The optimization studies showed that enzyme concentration was the most effective parameter for the final oligosaccharides yields. The optimal values of the significant parameters determined for enzyme concentration and acceptor:donor ratio were 3.45?U and 0.62, respectively. Even the response surface plots for input parameters verified the PSO results, an experimental validation study was performed for the reverification. The experimental verification results obtained were also consistent with the PSO results. These findings will help our understanding in the role of different parameters for the production of oligosaccharides in the acceptor reactions of GTFs.  相似文献   

14.
A particulate enzyme preparation from horseradish root tissue was shown to catalyze the transfer of 2-acetamido-2-deoxy-D-[14C1]glucose from uridine diphosphate 2-acetamido-2-deoxy-D-[14C1]glucose to an exogenous acceptor molecule derived from horseradish peroxidase. The acceptor was produced from purified peroxidase by the action of a mixture of glycoside hydrolases covalently bound to Sepharose. The membrane preparation containing the transferase was purified approximately 12-fold by aqueous two phase distribution and by discontinuous sucrose density gradient centrifugation. Hydrolysis of the reaction product yielded glucosamine as the only radio-labeled substance. Precipitation of the reaction product by antiserum against peroxidase showed that the label was incorporated into peroxidase. The transferase utilized the acceptor most efficiently when only 12% of the 2-acetamido-2-deoxy-D-glucose was removed from the acceptor. The acceptor lost no accepting capabilities when heated to 100 degrees C for 3 min prior to assay. Trypsin treatment caused a 14% decrease in label incorporated while pronase treatment caused a 93% decrease,  相似文献   

15.
Tammar wallaby (Macropus eugenii) mammary glands contain a UDP-GlcNAc:Gal beta 1----3Gal beta 1----4Glc beta 1----6-N-acetylglucosaminyltransferase (GlcNAcT) whose activity has been characterized with respect to the effect of pH, apparent Km for acceptor, effects of bivalent metal ions, acceptor specificity and identity of products. The enzyme did not show an absolute requirement for any bivalent metal ion but its activity was increased markedly by Mg2+, Ca2+ and Ba2+ and, to a lesser extent, by Mn2+. When Gal beta 1----3Gal beta 1----4Glc was used as acceptor, the product was Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----4Glc. With Gal beta 1----3Gal beta 1----3Gal beta 1----4Glc as acceptor, the product was shown, by 1H-NMR spectroscopy and exo-beta-galactosidase digestion, to be a novel pentasaccharide with the structure Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----3Gal beta 1----4Glc, suggesting that the enzyme recognises the non-reducing end of the acceptor substrate, rather than the reducing end.  相似文献   

16.
Membrane-associated sialyltransferase complexes of Escherichia coli K-235 catalyze the synthesis of sialyl polymers which remain associated with the cell envelope. Sialyl monophosphorylundecaprenol is an intermediate in the formation of these unique surface structures, and fluidity of the lipid phase is required for the proper function of the enzyme complex (Troy, F.A., Vijay, I.K., and Tesche, N. (1975) J. Biol. Chem. 250, 156-163, 164-170). In membranes containing an increased unsaturated fatty acid content of the phospholipids, obtained by growing cells at 15 degrees C, synthesis of polysialic acid was uncoupled from synthesis of the sialyl lipid-linked intermediate. Using reconstruction experiments, the importance of the role of an endogenous acceptor in polymer formation was suggested by the unexpected finding that polysialic acid synthesis could be reactivated in inactive membranes by the addition of an exogenous acceptor which contained sialic acid. Concomitant with polymer synthesis was a rapid loss of labeled sialic acid from the lipid phase. The activated sialic acid was shown to be transferred directly to the exogenous acceptor. These results establish: 1) that the temperature-induced alteration in polymer synthesis resulted from the inability of cells grown at 15 degrees C to either synthesize or assemble a functional endogenous acceptor and not from a defect in the synthesis of the sialyltransferase; 2) the intermediate precursor role of lipid-soluble sialic acid in sialyl polymer synthesis; and 3) that the exogenous acceptor served directly as an "acceptor" and not as a catalytic "effector" which stimulated an inactive membrane-enzyme complex. These results are in accord with the possibility that the low temperature-induced derangement in polymer formation is a consequence of the altered lipid structure resulting from the greater unsaturated fatty acid content in the membrane phospholipids. U-14C-labeled exogenous acceptor was isolated from the culture filtrate of cells grown at 37 degrees C and purified to homogeneity by preparative polyacrylamide gel electrophoresis. The pure acceptor was characterized structurally as a homopolymer of sialic acid with a degree of polymerization of approximately 12. Potassium borohydride reduction of the acceptor prior to complete hydrolysis with neuraminidase established that the polymer possessed a free reducing terminus of sialic acid. Subsequent structural studies showed that these oligomers of sialic acid appeared in the culture filtrate as a result of acid-catalyzed hydrolysis from membrane-associated polysialic acids of about 150 to 200 sialyl residues. Marked diminution of several membrane proteins was observed for cells grown at 15 degrees C. The possible relationship of these alterations to the upward shift in unsaturated lipids and to the loss of a functional endogenous acceptor is currently under study.  相似文献   

17.
Transglucosylation from sucrose to acetic acid by sucrose phosphorylase (EC 2.4.1.7) was studied. 1-O-Acetyl-alpha-D-glucopyranose was isolated as the main product of the enzyme reaction. We also compared the pH-dependence of transglycosylation catalyzed by sucrose phosphorylase toward carboxyl and hydroxyl groups. With hydroquinone as an acceptor molecule, the transfer ratio of glucose residue was higher at neutral pH. This pH-activity profile was similar to that of the phosphorolysis of sucrose by sucrose phosphorylase, but with acetic acid as an acceptor molecule, the transfer ratio of glucose residue was higher at low pH. These findings suggest that the undissociated carboxyl group is essential to the acceptor molecule for the transglycosylation reaction of sucrose phosphorylase. In a sensory test, the sour taste of acetic acid was markedly reduced by glucosylation. The threshold value of the sour taste of acetic acid glucosides was approximately 100 times greater than that of acetic acid.  相似文献   

18.
The nature of the primary signals important for the addition of xylose to serines on the core protein of the cartilage chondroitin sulfate proteoglycan has been investigated. The importance of consensus sequence elements (Acidic-Acidic-Xxx-Ser-Gly-Xxx-Gly) in the natural acceptor was shown by the significant decrease in acceptor capability of peptide fragments derived by digestion of deglycosylated core protein with Staphylococcus aureus V8 protease, which cleaves within the consensus sequence, compared to the similar reactivity of trypsin-derived peptide fragments, in which consensus sequences remain intact. A comparison of the acceptor efficiencies (Vmax/Km) of synthetic peptides containing the proposed xylosylation consensus sequence and the natural acceptor (deglycosylated core protein) was then made by use of the in vitro xylosyltransferase assay. The two types of substrates were found to have nearly equivalent acceptor efficiencies and to be competitive inhibitors of each other's acceptor capability, with Km = Kiapparent. These results suggest that the artificial peptides containing the consensus sequence are analogues of individual substitution sites on the core protein and allowed the kinetic mechanism of the xylosyltransferase reaction to be investigated, with one of the artificial peptides as a model substrate. The most probable kinetic mechanism for the xylosyltransferase reaction was found to be an ordered single displacement with UDP-xylose as the leading substrate and the xylosylated peptide as the first product released. This represents the first reported formal kinetic mechanism for this glycosyltransferase and the only one reported for a nucleotide sugar:protein transferase.  相似文献   

19.
Monoclonal antibodies (MAb) against the chromatin acceptor sites for the avian oviduct progesterone receptor were prepared with highly purified hen oviduct acceptor proteins reconstituted to hen DNA. Addition of the MAbs to a cell-free assay blocked progesterone receptor from chick oviduct (PRov) binding to native-like acceptor sites on nucleoacidic protein (NAP) representing a partially deproteinized chromatin, which has been shown to be enriched in these binding sites. However, the antibodies do not block PRov binding to pure DNA, nor do they affect the receptor itself. Estrogen receptor binding to NAP was not inhibited, supporting a receptor specificity of the PRov acceptor sites as reported previously from direct competition studies. These data support earlier studies showing that (1) the reconstituted PRov acceptor sites resemble the native sites, (2) the acceptor sites are receptor specific, and (3) the PRov binding sites of NAP are different from those of pure DNA. While some animal-species specificity in the PRov binding inhibition was observed, no tissue specificity was seen. Direct binding of the antibodies to native acceptor sites was demonstrated in an enzyme-linked immunosorbent assay (ELISA) system. The antibodies showed little recognition of free acceptor protein or DNA alone, indicating specificity for the protein-DNA complex. A partial evolutionary conservation of the nuclear acceptor sites for PRov was shown by the fact that about 50% of the inhibition seen with hen NAP was obtained with NAPs from several other species, and this partial cross-reactivity of the MAbs with the same NAPs from other animal species was also seen in the ELISA.  相似文献   

20.
V L Davidson  M A Kumar  J Y Wu 《Biochemistry》1992,31(5):1504-1508
Methanol dehydrogenase activity, when assayed with phenazine ethosulfate (PES) as an electron acceptor, was inhibited by superoxide dismutase (SOD) and by Mn2+ only under aerobic conditions. Catalase, formate, and other divalent cations did not inhibit the enzyme. The enzyme also exhibited significantly higher levels of activity when assayed with PES under anaerobic conditions relative to aerobic conditions. The oxygen- and superoxide-dependent effects on methanol dehydrogenase were not observed when either Wurster's Blue or cytochrome c-55li was used as an electron acceptor. Another quinoprotein, methylamine dehydrogenase, which possesses tryptophan tryptophylquinone (TTQ) rather than pyrroloquinoline quinone (PQQ) as a prosthetic group, was not inhibited by SOD or Mn2+ when assayed with PES as an electron acceptor. Spectroscopic analysis of methanol dehydrogenase provided no evidence for any oxygen- or superoxide-dependent changes in the redox state of the enzyme-bound PQQ cofactor of methanol dehydrogenase. To explain these data, a model is presented in which this cofactor reacts reversibly with oxygen and superoxide, and in which oxygen is able to compete with PES as an electron acceptor for the reduced species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号