首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85–95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.  相似文献   

2.
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 microg of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 microg of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 microg of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson's disease.  相似文献   

3.
目的观察6-羟多巴胺(6-OHDA)单侧注射制备的帕金森病(PD)大鼠多巴胺(DA)能神经元的超微结构改变。方法单侧微量注射6-OHDA制备PD大鼠模型,用免疫荧光组织化学方法观察正常侧与6-OHDA注射侧黑质酪氨酸羟化酶(TH)阳性神经细胞及神经纤维的变化;并利用免疫电镜技术观察大鼠正常侧与注射侧黑质致密部DA能神经元的超微结构。结果免疫荧光法显示注射侧黑质致密部TH阳性细胞数和网状部TH阳性纤维面积与正常侧的百分比平均值分别为21.83%,23.19%。免疫电镜显示:TH免疫反应阳性产物表达于PD大鼠正常侧DA能神经元的高尔基复合体质膜面及胞质内,电子密度较高,注射侧很少见或几乎未见,且注射侧线粒体嵴有不同程度的溶解,呈空泡样变或髓样变,粗面内质网脱颗粒。结论6-OHDA可引起DA能神经元发生凋亡的超微结构改变。  相似文献   

4.
Several mechanisms are thought to be involved in the progressive decline in neurons of the substantia nigra pars compacta (SNpc) that leads to Parkinson's disease (PD). Neurotoxin 6-hydroxydopamine (6-OHDA), which induces parkinsonian symptoms in experimental animals, is thought to be formed endogenously in patients with PD through dopamine (DA) oxidation and may cause dopaminergic cell death via a free radical mechanism. We therefore investigated protection against 6-OHDA by inhibiting oxidative stress using a gene transfer strategy. We overexpressed the antioxidative Cu/Zn-superoxide dismutase (SOD1) enzyme in primary culture dopaminergic cells by infection with an adenovirus carrying the human SOD1 gene (Ad-hSOD1). Survival of the dopaminergic cells exposed to 6-OHDA was 50% higher among the SOD1-producing cells than the cells infected with control adenoviruses. In contrast, no significant increased survival of (6-OHDA)-treated dopaminergic cells was observed when they were infected with an adenovirus expressing the H(2) O(2) -scavenging glutathione peroxidase (GPx) enzyme. These results underline the major contribution of superoxide in the dopaminergic cell death process induced by 6-OHDA in primary cultures. Overall, this study demonstrates that the survival of the dopaminergic neurons can be highly increased by the adenoviral gene transfer of SOD1. An antioxidant gene transfer strategy using viral vectors expressing SOD1 is therefore potentially beneficial for protecting dopaminergic neurons in PD.  相似文献   

5.
Calcitriol has been implicated as an agent that has neuroprotective effects in various animal models of diseases, possibly by upregulating glial cell line-derived neurotrophic factor (GDNF). The present study examined the neuroprotective effects of calcitriol in a model of early Parkinson’s disease. Rats were treated daily with calcitriol or saline for 7 days before an intraventricular injection of 6-hydroxydopamine (6-OHDA), and then for 1 day or daily for 3½ to 4 weeks after lesioning. Evoked overflow and tissue content of dopamine (DA) were determined 3½ to 4 weeks post lesion. The 8-day calcitriol treatment did not attenuate 6-OHDA-induced decreases in evoked overflow of DA, nor did it protect against 6-OHDA-induced reductions in tissue levels of DA in the striatum or substantia nigra. However, the long-term calcitriol treatment did significantly increase evoked overflow of DA, as well as the amount of DA in the striatum, compared to saline treated animals. GDNF was significantly increased in the substantia nigra, but not in the striatum, of non-lesioned, calcitriol treated rats. These results suggest that long-term treatment with calcitriol can provide partial protection for dopaminergic neurons against the effects of intraventricularly administered 6-OHDA.  相似文献   

6.
Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.  相似文献   

7.
Serofendic acid was recently identified as a neuroprotective factor from fetal calf serum. This study was designed to evaluate the neuroprotective effects of an intranigral microinjection of serofendic acid based on behavioral, neurochemical and histochemical studies in hemi-parkinsonian rats using 6-hydroxydopamine (6-OHDA). Rats were injected with 6-OHDA in the presence or absence of serofendic acid, or were treated with serofendic acid on the same lateral side, at 12, 24 or 72 h after 6-OHDA lesion. Intranigral injection of 6-OHDA alone induced a massive loss of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra pars compacta (SNpc). Either simultaneous or 12 h post-administration of serofendic acid significantly prevented both dopaminergic neurodegeneration and drug-induced rotational asymmetry. Immunoreactivities for oxidative stress markers, such as 3-nitrotyrosine (3-NT) and 4-hydroxy-2-nonenal (4-HNE), were markedly detected in the SNpc of rats injected with 6-OHDA alone. These immunoreactivities were markedly suppressed by the co-administration of serofendic acid, similar to the results in vehicle-treated control rats. In addition, serofendic acid inhibited 6-OHDA-induced alpha-synuclein expression and glial activation in the SNpc. These results suggest that serofendic acid protects against 6-OHDA-induced SNpc dopaminergic neurodegeneration in a rat model of Parkinson's disease.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) has recently been shown to enhance the survival of dopamine neurons in cultures derived from the embryonic rat mesencephalon. We now extend this study by demonstrating that, in addition to the effect of sustaining survival of dopaminergic neurons, BDNF also confers protection against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenylpyridinium ion (MPP+). Exposure of mesencephalic cultures to either 6-OHDA or MPP+ resulted in a loss of 70-80% of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunocytochemistry. In BDNF-treated cultures, loss of TH-positive cells after exposure to either toxin was reduced to only 30%. To facilitate biochemical measurements, we studied SH-SY5Y dopaminergic neuroblastoma cells. BDNF was found to protect these cells from the dopaminergic neurotoxins, 6-OHDA and MPP+. Indicative of oxidative stress, treatment of SH-SY5Y cells with 10 microM 6-OHDA for 24 h caused a fivefold increase in the levels of oxidized glutathione (GSSG). Pretreatment with BDNF for 24 h completely prevented the rise in GSSG. Further examination revealed that BDNF increased the activity of the protective enzyme, glutathione reductase, by 100%. In contrast, BDNF had no effect on the activity of catalase. These results add further impetus to exploring the therapeutic potential of BDNF in animal models of Parkinson's disease.  相似文献   

9.
Unilateral injection into the right substantia nigra of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) produces extensive loss of dopaminergic cells ('hemi-parkinsonian rat'). The pineal hormone melatonin, which is a potent antioxidant against different reactive oxygen species and has been reported to be neuroprotective in vivo and in vitro, was evaluated for potential anti-Parkinson effects in this model. Imbalance in dopaminergic innervation between the striata produced by intranigral administration of 6-OHDA results in a postural asymmetry causing rotation away from the nonlesioned side. Melatonin given systemically prevented apomorphine-induced circling behavior in 6-OHDA-lesioned rats. Reduced activity of mitochondrial oxidative phosphorylation enzymes has been suggested in some neurodegenerative diseases; in particular, selective decrease in complex I activity is observed in the substantia nigra of Parkinson's disease patients. Analysis of mitochondrial oxidative phosphorylation enzyme activities in nigral tissue from 6-OHDA-lesioned rats by a novel BN-PAGE histochemical procedure revealed a clear loss of complex I activity, which was protected against in melatonin-treated animals. A good correlation between behavioral parameters and enzymatic (complex I) analysis was observed independent of melatonin administration. A deficit in mitochondrial complex I could conceivably contribute to cell death in parkinsonism via free radical mechanisms, both directly via reactive oxygen species production and by decreased ATP synthesis and energy failure. Melatonin may have potential utility in the treatment of neurodegenerative disorders where oxidative stress is a participant.  相似文献   

10.
To study the relationship between tissue accumulation of Zinc (Zn) and neurodegeneration in the nigrostriatal dopaminergic pathway,65Zn distribution in this pathway was examined after unilateral injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra of rats. When65ZnCl2 was intravenously injected 4 days after treatment with 6-OHDA,65Zn was concentrated in the ipsilateral substantia nigra 6 days after65Zn injection. On the other hand, 19 d after treatment with 6-OHDA,65Zn distribution in the ipsilateral substantia nigra was decreased to the level of the contralateral one. When NH4 99TcO4, which cannot go through the blood-brain barrier, was injected into rats 4 d after treatment with 6-OHDA,99Tc was concentrated in the ipsilateral substantia nigra 30 min after99Tc injection, but no longer detectable 6 d after injection. These results suggest that Zn is necessary for a repair process called replacement gliosis after the death of neurons and that excess Zn does not accumulate in the lesion after completion of the gliosis.  相似文献   

11.
Enriched environment (EE) is neuroprotective in several animal models of neurodegeneration. It stimulates the expression of trophic factors and modifies the astrocyte cell population which has been said to exert neuroprotective effects. We have investigated the effects of EE on 6-hydroxydopamine (6-OHDA)-induced neuronal death after unilateral administration to the medial forebrain bundle, which reaches 85–95% of dopaminergic neurons in the substantia nigra after 3 weeks. Continuous exposure to EE 3 weeks before and after 6-OHDA injection prevents neuronal death (assessed by tyrosine hydroxylase staining), protects the nigrostriatal pathway (assessed by Fluorogold retrograde labeling) and reduces motor impairment. Four days after 6-OHDA injection, EE was associated with a marked increase in glial fibrillary acidic protein staining and prevented neuronal death (assessed by Fluoro Jade-B) but not partial loss of tyrosine hydroxylase staining in the anterior substantia nigra. These results robustly demonstrate that EE preserves the entire nigrostriatal system against 6-OHDA-induced toxicity, and suggests that an early post-lesion astrocytic reaction may participate in the neuroprotective mechanism.  相似文献   

12.
The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.  相似文献   

13.
Pituitary adenylate cyclase activating polypeptide (PACAP) has several different actions in the nervous system, including neuroprotective effects. In the present study, we investigated the effects of different doses of PACAP on the functional and morphological outcome in a rat model of Parkinson's disease. Rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra. PACAP-treated animals received 1, 0.1 or 0.01 microg PACAP as a pretreatment. Control animals without PACAP treatment displayed severe hypokinesia at 1 and 10 days post-lesion when compared to normal animals or those receiving saline only. PACAP treatment resulted in less severe acute hypokinesia, and complete recovery by 10 days. Asymmetrical signs were observed in all lesioned animals 1 day post-lesion. PACAP-treated animals, however, showed better recovery as they ceased to display asymmetrical signs 10 days later and showed markedly less apomorphine-induced rotations. Best behavioral outcome was observed in animals treated with 0.1 microg PACAP. Tyrosine-hydroxylase (TH) immunohistochemistry revealed increased number of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area in all PACAP-treated rats in contrast to the severe cell loss in control animals. These results indicate that PACAP may be a promising therapeutic agent in Parkinson's disease.  相似文献   

14.
Parkinson’s disease (PD), characterized by loss of dopaminergic neurons in the substantia nigra, is a neurodegenerative disorder of central nervous system. The present study was designed to investigate the therapeutic effect of ACS84, a hydrogen sulfide-releasing-L-Dopa derivative compound, in a 6-hydroxydopamine (6-OHDA)-induced PD model. ACS84 protected the SH-SY5Y cells against 6-OHDA-induced cell injury and oxidative stress. The protective effect resulted from stimulation of Nrf-2 nuclear translocation and promotion of anti-oxidant enzymes expression. In the 6-OHDA-induced PD rat model, intragastric administration of ACS84 relieved the movement dysfunction of the model animals. Immunofluorescence staining and High-performance liquid chromatography analysis showed that ACS84 alleviated the loss of tyrosine-hydroxylase positive neurons in the substantia nigra and the declined dopamine concentration in the injured striatums of the 6-OHDA-induced PD model. Moreover, ACS84 reversed the elevated malondialdehyde level and the decreased glutathione level in vivo. In conclusion, ACS84 may prevent neurodegeneration via the anti-oxidative mechanism and has potential therapeutic values for Parkinson’s disease.  相似文献   

15.
Activation of glial cells is a prevalent response to neuronal damage in brain disease and ageing, with potential neuroprotective and neurotoxic consequences. We were interested in studying the role of glial activation on dopaminergic neurons of the substantia nigra in an animal model of Parkinson's disease. Thus, we evaluated the effect of a pre-existing glial activation on the dopaminergic neuronal death induced by striatal infusion of 6-hydroxydopamine. We established a model of local glial activation by stereotaxic infusion of interleukin-1beta in the substantia nigra of adult rats. Interleukin-1beta (20 ng) induced a marked activation of astrocytes at days 2, 5 and 10, revealed by heat-shock protein 27 and glial fibrillary acid protein immunohistochemistry, but did not affect the microglial markers OX-42 and heat-shock proteins 32 or 47. Intranigral infusion of interleukin-1beta 5 days before a striatal injection of 6-hydroxydopamine significantly protected nigral dopaminergic cell bodies, but not striatal terminals from the 6-hydroxydopamine lesion. Also, in the animals pre-treated with interleukin-1beta, a significant prevention of 6-hydroxydopamine-induced reduction of adjusting steps, but not of 6-hydroxydopamine-induced amphetamine rotations, were observed. These data show the characterization of a novel model of local astroglial activation in the substantia nigra and support the hypothesis of a neuroprotective role of activated astrocytes in Parkinson's disease.  相似文献   

16.
Parkinson’s disease (PD) is the second most common severe neurodegenerative disorder that is characterized by progressive degeneration of dopaminergic neurons (DA neurons) in the substantia nigra pars compacta (SNpc) region of the brain. In the present study, we investigated the effects of the synthetic regulatory peptides Semax (analog of an ACTH 4-10 fragment (ACTH4-10)) and Selank (analog of immunomodulatory taftsin) on behavior of rats with 6-hydroxidopamine (6-OHDA) induced PD-like parkinsonism. It was showed that both peptides did not affect motor activity of rats in elevated cross shaped maze and passive defensive behavior of the animals. At the same time, Selank decreased level of anxiety of rats with toxic damage of DA neurons in elevated cross shaped maze. Previously such effects of Selank were revealed in healthy rodents (rats and mice) with different models of psycho-emotional stress. Therefore, toxic damage of substantia nigra does not affect the response of the rat organism on this peptide.  相似文献   

17.
A selective increase in content of iron in the pars compacta of the substantia nigra has been implicated in the biochemical pathology of Parkinson's disease. Iron is thought to induce oxidative stress by liberation of oxygen free radicals from H2O2. Because 6-hydroxydopamine (6-OHDA) is thought to induce nigrostriatal dopaminergic neuronal lesions via metal-catalyzed free radical formation, the effect of the iron chelator desferrioxamine was investigated on 6-OHDA-induced dopaminergic neuron degeneration in the rat. Intracerebroventricular injection of 6-OHDA (250 micrograms) caused a 88, 79, and 70% reduction in striatal tissue content of dopamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid (HVA), respectively, and a 2.5-fold increase in DA release as indicated by the HVA/DA ratio. Prior injection of desferrioxamine (130 ng i.c.v.) resulted in a significant protection (approximately 60%) against the 6-OHDA-induced reduction in striatal DA content and a normalization of DA release. Dopaminergic-related behavioral responses, such as spontaneous movements in a novel environment and rearing, were significantly impaired in the 6-OHDA-treated group. By contrast, the desferrioxamine-pretreated rats exhibited almost normal behavioral responses. The ability of iron chelators to retard dopaminergic neurodegeneration in the substantia nigra may indicate a new therapeutic strategy in the treatment of Parkinson's disease.  相似文献   

18.
Parkinson's disease (PD) is caused by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of Parkinson's disease. In the present study, Astragaloside IV (AS-IV) extracted from the dried root of Astragalus membranaceus, a well-known Chinese medicine used for the treatment of neurodegenerative diseases, was investigated for its capacity to protect dopaminergic neurons in experimental Parkinson's disease. By examining the effect of AS-IV on 6-hydroxydopamine (6-OHDA)-induced loss of dopaminergic neurons in primary nigral culture, we found that AS-IV pretreatment significantly and dose-dependently attenuated 6-OHDA-induced loss of dopaminergic neurons. Neuronal fiber length studies showed that massive neuronal cell death with degenerated neurons was observed in those cultures incubated with 6-OHDA, whereas in AS-IV co-treatments most dopaminergic neurons were seen to be intact and sprouting. In flow cytometric analysis, AS-IV resulted in a marked and dose-dependent rescue in tyrosine hydrolase (TH)-immunopositive cells from 6-OHDA-induced degeneration of dopaminergic neurons. Double immunofluorescence revealed that AS-IV treatment alone at concentrations of 100 and 200 μM increased the level of TH and NOS (nitrite oxide synthase) immunoreactivities; however, the protective effect of AS-IV on TH and NOS immunopositive cells in 6-OHDA treated nigral cell cultures was only seen at a concentration of 100 μM. These findings show that AS-IV can protect dopaminergic neurons against 6-OHDA-induced degeneration. Besides the neuroprotective effect, AS-IV alone promoted neurite outgrowth and increased TH and NOS immunoreactive of dopaminergic neurons. The neuroprotective and neurosprouting effects of AS-IV are specific for dopaminergic neurons and it has therapeutic potential in the treatment of PD.  相似文献   

19.
2-(5,5-Dimethyl-2-oxo-2-λ(5)-[1,3,2]dioxaphosphinan-2-yl)-2-methyl-3,4-dihydro-2H-pyrroline N-oxide {2-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphinan-2-yl)-3,4-dihydro-2-methyl-2H-pyrrole N-oxide, G-CYPMPO} as the stable crystals having gauche conformation was successfully synthesized as a novel 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO)-type spin trap agent. However, the function of G-CYPMPO in vivo is still unclear. Thus, the purpose of this study was to evaluate the effects of G-CYPMPO in an in vivo model of Parkinson's disease (PD). Rats were microinjected with 6-hydroxydopamine (6-OHDA, 32nmol) in the presence or absence of G-CYPMPO (0.4, 1.2, 4nmol). We investigated behavioral and histochemical parameters in this rat model of PD. In addition, to examine the effects of G-CYPMPO against oxidative stress, we used electron spin resonance (ESR) spectrometry. Intranigral injection of 6-OHDA alone induced a massive loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc). Co-microinjection of G-CYPMPO significantly prevented 6-OHDA-induced dopaminergic neurodegeneration and behavioral impairments. Immunoreactivities for glial markers, such as cluster of differentiation antigen-11b (CD11b) and glial fibrillary acidic protein (GFAP), were notably detected in the SNpc of rats injected with 6-OHDA alone. These immunoreactivities were markedly suppressed by the co-microinjection of G-CYPMPO, similar to the results in vehicle-treated rats. In addition, G-CYPMPO directly trapped hydroxyl radical (OH) generated from 6-OHDA and Fe(2+) in a concentration-dependent manner. These results suggest that G-CYPMPO attenuates 6-OHDA-induced dopaminergic neurodegeneration in a rat model of PD, and is a useful tool for biological research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号