首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Characterization of the human blood plasma proteome is critical to the discovery of routinely useful clinical biomarkers. We used an accurate mass and time (AMT) tag strategy with high-resolution mass accuracy cLC-FT-ICR MS to perform a global proteomic analysis of pilot study samples as part of the HUPO Plasma Proteome Project. HUPO reference serum and citrated plasma samples from African Americans, Asian Americans, and Caucasian Americans were analyzed, in addition to a Pacific Northwest National Laboratory reference serum and plasma. The AMT tag strategy allowed us to leverage two previously published "shotgun" proteomics experiments to perform global analyses on these samples in triplicate in less than 4 days total analysis time. A total of 722 (22% with multiple peptide identifications) International Protein Index redundant proteins, or 377 protein families by ProteinProphet, were identified over the six individual HUPO serum and plasma samples. The samples yielded a similar number of identified redundant proteins in the plasma samples (average 446 +/- 23) as found in the serum samples (average 440 +/- 20). These proteins were identified by an average of 956 +/- 35 unique peptides in plasma and 930 +/- 11 unique peptides in serum. In addition to this high-throughput analysis, the AMT tag approach was used with a Z-score normalization to compare relative protein abundances. This analysis highlighted both known differences in serum and citrated plasma such as fibrinogens, and reproducible differences in peptide abundances from proteins such as soluble activin receptor-like kinase 7b and glycoprotein m6b. The AMT tag strategy not only improved our sample throughput but also provided a basis for estimated quantitation.  相似文献   

2.
The human plasma proteome: analysis of Chinese serum using shotgun strategy   总被引:8,自引:0,他引:8  
He P  He HZ  Dai J  Wang Y  Sheng QH  Zhou LP  Zhang ZS  Sun YL  Liu F  Wang K  Zhang JS  Wang HX  Song ZM  Zhang HR  Zeng R  Zhao X 《Proteomics》2005,5(13):3442-3453
We have investigated the serum proteome of Han-nationality Chinese by using shotgun strategy. A complete proteomics analysis was performed on two reference specimens from a total of 20 healthy donors, in which each sample was made from ten-pooled male or female serum, respectively. The methodology used encompassed (1) removal of six high-abundant proteins; (2) tryptic digestion of low- and high-abundant proteins of serum; (3) separation of peptide mixture by RP-HPLC followed by ESI-MS/MS identification. A total of 944 nonredundant proteins were identified under a stringent filter condition (X(corr) > or = 1.9, > or = 2.2, and > or = 3.75, < or = C(n) > or = 0.1, and R(sp) > or = 4.0) in both pooled male and female samples, in which 594 and 622 entire proteins were found, respectively. Compared with the total 3020 protein identifications confirmed by more than one laboratory or more than one specimen in HUPO Plasma Proteome Project (PPP) participating laboratories recently, 206 proteins were identified with at least two distinct peptides per protein and 185 proteins were considered as high-confidence identification. Moreover, some lower abundance serum proteins (ng/mL range) were detected, such as complement C5 and CA125, routinely used as an ovarian cancer marker in plasma and serum. The resulting nonredundant list of serum proteins would add significant information to the knowledge base of human plasma proteome and facilitate disease markers discovery.  相似文献   

3.
Human plasma and serum proteins are subject to intrinsic proteolytic degradation both during and after blood collection. By monitoring peptides, we investigated the stability of plasma and serum samples and the effects of anticoagulants and protease inhibitors on the plasma samples. Serum and plasma were subjected to time-course incubation, and the peptides (750-3200 Da) were extracted and analyzed with MALDI-TOF MS. Peptides of interest were further identified by MALDI-TOF/TOF MS and ESI-MS/MS analyses. Our observations indicate that plasma peptides are significantly different from serum peptides. Intrinsic proteases cause these differences between plasma and serum samples, as well as the differences among three plasma samples using either EDTA, sodium citrate, or heparin as the anticoagulant, which accounts for partial inhibitory effects on plasma proteolytic activities. Proteases and peptidases, including both aminopeptidases and carboxypeptidases, also cause time-dependent, sequential generation and digestion of the peptides in serum and all three plasmas, specifically during early sample collection and processing. Protease inhibitors within an EDTA-plasma-collection device inhibit both intrinsic plasma peptidases and proteases and moderate the time-dependent changes of the plasma peptides, including bradykinin, and complement C4- and C3- derived peptides. Our results suggest that mixing protease inhibitors immediately with blood during blood collection provides enhanced stabilization of the plasma proteome.  相似文献   

4.
Serum or plasma can be utilized in a variety of studies targeted toward the discovery of disease biomarkers. In this study, the proteome profiles of plasma samples prepared using various anticoagulants (EDTA, heparin or citrate), were compared with those of serum using two-dimensional electrophoresis (2-DE). Proteins which evidenced different levels in the plasma and serum were screened and identified using ESI-Q-TOF MS/MS. The proteins which became detectable after the removal of fibrinogen from serum were identified as pigment epithelial differentiating factor (four spots), fetuin-like protein, and the hemopexin precursor. In particular, three proteins, pre-serum amyloid P component, plasma glutathione peroxidase precursor, and tetranectin, evidenced increased volume intensity only in the plasma samples prepared with EDTA.  相似文献   

5.
Serum or plasma can be utilized in a variety of studies targeted toward the discovery of disease biomarkers. In this study, the proteome profiles of plasma samples prepared using various anticoagulants (EDTA, heparin or citrate), were compared with those of serum using two-dimensional electrophoresis (2-DE). Proteins which evidenced different levels in the plasma and serum were screened and identified using ESI-Q-TOF MS/MS. The proteins which became detectable after the removal of fibrinogen from serum were identified as pigment epithelial differentiating factor (four spots), fetuin-like protein, and the hemopexin precursor. In particular, three proteins, pre-serum amyloid P component, plasma glutathione peroxidase precursor, and tetranectin, evidenced increased volume intensity only in the plasma samples prepared with EDTA.  相似文献   

6.
HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anti-coagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics.med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay-based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan. These PPP results on complexity, dynamic range, incomplete sampling, false-positive matches, and integration of diverse datasets for plasma and serum proteins lay a foundation for development and validation of circulating protein biomarkers in health and disease.  相似文献   

7.
We report on a multicenter analysis of HUPO reference specimens using SELDI-TOF MS. Eight sites submitted data obtained from serum and plasma reference specimen analysis. Spectra from five sites passed preliminary quality assurance tests and were subjected to further analysis. Intralaboratory CVs varied from 15 to 43%. A correlation coefficient matrix generated using data from these five sites demonstrated high level of correlation, with values >0.7 on 37 of 42 spectra. More than 50 peaks were differentially present among the various sample types, as observed on three chip surfaces. Additionally, peaks at approximately 9200 and approximately 15,950 m/z were present only in select reference specimens. Chromatographic fractionation using anion-exchange, membrane cutoff, and reverse phase chromatography, was employed for protein purification of the approximately 9200 m/z peak. It was identified as the haptoglobin alpha subunit after peptide mass fingerprinting and high-resolution MS/MS analysis. The differential expression of this protein was confirmed by Western blot analysis. These pilot studies demonstrate the potential of the SELDI platform for reproducible and consistent analysis of serum/plasma across multiple sites and also for targeted biomarker discovery and protein identification. This approach could be exploited for population-based studies in all phases of the HUPO PPP.  相似文献   

8.
Hsieh SY  Chen RK  Pan YH  Lee HL 《Proteomics》2006,6(10):3189-3198
Blood is an ideal source for biomarker discovery. However, little has been done to address the effects of sampling, handling and storage procedures on serum/plasma proteomes. We used magnetic bead-based MALDI-TOF MS to systematically evaluate the influence of each procedure on low-molecular-weight serum/plasma proteome profiling on the basis of the whole spectra. We found that sampling procedures, including the selection of blood collection tubes and anticoagulants, variations in clotting time or time lag before centrifugation, and hemolysis, displayed significant effects on the proteomes. Moreover, serum and plasma were mutually incompatible for proteome comparison. By contrast, overnight fasting, handling procedures, including centrifugation speeds (1500 x g vs. 3000 x g) or time (15 min vs. 30 min), and storage conditions, such as at 4 degrees C or 25 degrees C for up to 24 h or at -80 degrees C for up to 3 months, and repeated freeze/thaw of up to ten cycles, had relatively minor effects on the proteomes based upon our analysis of about 100 peaks. We concluded that low-molecular-weight serum/plasma proteomes were diversely affected by sampling, handling and storage with most change from variations of sampling procedures. We therefore suggest the necessity of standardizing sampling procedure for proteome comparison and biomarker discovery.  相似文献   

9.
One of the major challenges facing protein analysis is the dynamic range of protein expression within massively complex samples (Corthals, G. L. et al.., Electrophoresis 2000, 21, 1104-1115). In plasma this difference is as great as ten orders of magnitude, and this is currently beyond the range of detection achievable by any of the analytical techniques. Plasma has the additional challenge of having a few highly abundant proteins, such as albumin, which mask the detection of lower abundance and biologically significant proteins. The use of the Gradiflow BF400 as a fractionation tool to deplete highly abundant albumin from human plasma is reported here. A sequential three-step protocol was performed on five plasma samples as part of the International Plasma Proteome Project organised by the HUPO; four containing different anticoagulants: EDTA, citrate, heparin and a control sample (NIBSC); and a serum sample. Plasma from an alternate source also underwent fractionation and served as an in-house control. Time modulation between 1 and 7 h was observed for the depletion of albumin from these samples. Following albumin depletion, each fraction was trypsin-digested and the peptides were fractionated further using a 2-D LC-MS/MS. Differences in the total number of proteins identified for each sample were also noted.  相似文献   

10.
The low molecular weight plasma proteome and its biological relevance are not well defined; therefore, experiments were conducted to directly sequence and identify peptides observed in plasma and serum protein profiles. Protein fractionation, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling, and liquid-chromatography coupled to MALDI tandem mass spectrometry (MS/MS) sequencing were used to analyze the low molecular weight proteome of heparinized plasma. Four fractionation techniques using functionally derivatized 96-well plates were used to extract peptides from plasma. Tandem TOF was successful for identifying peptides up to m/z 5500 with no prior knowledge of the sequence and was also used to verify the sequence assignments for larger ion signals. The peptides (n>250) sequenced in these profiles came from a surprisingly small number of proteins (n approximately 20), which were all common to plasma, including fibrinogen, complement components, antiproteases, and carrier proteins. The cleavage patterns were consistent with those of known plasma proteases, including initial cleavages by thrombin, plasmin and complement proteins, followed by aminopeptidase and carboxypeptidase activity. On the basis of these data, we discuss limitations in biomarker discovery in the low molecular weight plasma or serum proteome using crude fractionation coupled to MALDI-MS profiling.  相似文献   

11.
Cho SY  Lee EY  Lee JS  Kim HY  Park JM  Kwon MS  Park YK  Lee HJ  Kang MJ  Kim JY  Yoo JS  Park SJ  Cho JW  Kim HS  Paik YK 《Proteomics》2005,5(13):3386-3396
Human plasma is the most clinically valuable specimen, containing not only a dynamic concentration range of protein components, but also several groups of high-abundance proteins that seriously interfere with the detection of low-abundance potential biomarker proteins. To establish a high-throughput method for efficient depletion of high-abundance proteins and subsequent fractionation, prior to molecular analysis of proteins, we explored how coupled immunoaffinity columns, commercially available as multiple affinity removal columns (MARC) and free flow electrophoresis (FFE), could apply to the HUPO plasma proteome project. Here we report identification of proteins and construction of a human plasma 2-DE map devoid of six major abundance proteins (albumin, transferrin, IgG, IgA, haptoglobin, and antitrypsin) using MARC. The proteins were identified by PMF, matching with various internal 2-DE maps, resulting in a total of 144 nonredundant proteins that were identified from 398 spots. Tissue plasminogen activator, usually present at 10-60 ng/mL plasma, was also identified, indicative of a potentially low-abundance biomarker. Comparison of representative 2-D gel images of three ethnic groups (Caucasian, Asian-American, African-American) plasma exhibited minor differences in certain proteins between races and sample pretreatment. To establish a throughput fractionation of plasma samples by FFE, either MARC flow-through fractions or untreated samples of Korean serum were subjected to FFE. After separation of samples on FFE, an aliquot of each fraction was analyzed by 1-D gel, in which MARC separation was a prerequisite for FFE work. Thus, a working scheme of MARC --> FFE --> 1-D PAGE --> 2-D-nanoLC-MS/MS may be considered as a widely applicable standard platform technology for fractionation of complex samples like plasma.  相似文献   

12.
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome – low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.  相似文献   

13.
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.  相似文献   

14.
Four different immunoassay and antibody microarray methods performed at four different sites were used to measure the levels of a broad range of proteins (N = 323 assays; 39, 88, 168, and 28 assays at the respective sites; 237 unique analytes) in the human serum and plasma reference specimens distributed by the Plasma Proteome Project (PPP) of the HUPO. The methods provided a means to (1) assess the level of systematic variation in protein abundances associated with blood preparation methods (serum, citrate-anticoagulated-plasma, EDTA-anticoagulated-plasma, or heparin-anticoagulated-plasma) and (2) evaluate the dependence on concentration of MS-based protein identifications from data sets using the HUPO specimens. Some proteins, particularly cytokines, had highly variable concentrations between the different sample preparations, suggesting specific effects of certain anticoagulants on the stability or availability of these proteins. The linkage of antibody-based measurements from 66 different analytes with the combined MS/MS data from 18 different laboratories showed that protein detection and the quality of MS data increased with analyte concentration. The conclusions from these initial analyses are that the optimal blood preparation method is variable between analytes and that the discovery of blood proteins by MS can be extended to concentrations below the ng/mL range under certain circumstances. Continued developments in antibody-based methods will further advance the scientific goals of the PPP.  相似文献   

15.
Peptide identifications of high probability from 28 LC-MS/MS human serum and plasma experiments from eight different laboratories, carried out in the context of the HUPO Plasma Proteome Project, were combined and mapped to the EnsEMBL human genome. The 6929 distinct observed peptides were mapped to approximately 960 different proteins. The resulting compendium of peptides and their associated samples, proteins, and genes is made publicly available as a reference for future research on human plasma.  相似文献   

16.
Strategies for removal of high abundance proteins have been increasingly utilized in proteomic studies of serum/plasma and other body fluids to enhance the detection of low abundance proteins and achieve broader proteome coverage; however, both the reproducibility and specificity of the high abundance protein depletion process still represent common concerns. Here we report a detailed evaluation of immunoaffinity subtraction performed applying the ProteomeLab IgY-12 system that is commonly used in human serum/plasma proteome characterization in combination with high resolution LC-MS/MS. Plasma samples were repeatedly processed using this approach, and the resulting flow-through fractions and bound fractions were individually analyzed for comparison. The removal of target proteins by the immunoaffinity subtraction system and the overall process was highly reproducible. Non-target proteins, including one spiked protein standard (rabbit glyceraldehyde-3-phosphate dehydrogenase), were also observed to bind to the column at different levels but also in a reproducible manner. The results suggest that multiprotein immunoaffinity subtraction systems can be readily integrated into quantitative strategies to enhance detection of low abundance proteins in biomarker discovery studies.  相似文献   

17.
Plasma from different species is the most accessible and valuable source for biomarker discovery in clinical and animal samples. However, due to the high abundance of some proteins such as albumin and immunoglobulins, low-abundant proteins are often undetectable in proteomic analysis of plasma. We have established a plasma depletion scheme using chicken antibodies against various abundant proteins. This immunoaffinity purification procedure is able to deplete albumin across multiple species. The high binding capacity and specificity of the chicken antibody enables the efficient capture of its ligand from microliter volumes of plasma sample. The resulting two-dimensional gel analyses of the depleted and captured samples show significant enhancement of the low-abundant proteins and specific capture of the abundant ligand. By utilizing this sample preparation scheme, it is now possible to analyze the plasma proteome from multiple species in a potentially rapid and large-scale capacity for biomarker discovery, drug target discovery, and toxicology studies.  相似文献   

18.
The detection and quantification of plasma (serum) proteins at or below the ng/ml concentration range are of critical importance for the discovery and evaluation of new protein biomarkers. This has been achieved either by the development of high sensitivity ELISA or other immunoassays for specific proteins or by the extensive fractionation of the plasma proteome followed by the mass spectrometric analysis of the resulting fractions. The first approach is limited by the high cost and time investment for assay development and the requirement of a validated target. The second, although reasonably comprehensive and unbiased, is limited by sample throughput. Here we describe a method for the detection of plasma proteins at concentrations in the ng/ml or sub-ng/ml range and their accurate quantification over 5 orders of magnitude. The method is based on the selective isolation of N-glycosites from the plasma proteome and the detection and quantification of targeted peptides in a quadrupole linear ion trap instrument operated in the multiple reaction monitoring (MRM) mode. The unprecedented sensitivity of the mass spectrometric analysis of minimally fractionated plasma samples is the result of the significantly reduced sample complexity of the isolated N-glycosites compared with whole plasma proteome digests and the selectivity of the MRM process. Precise quantification was achieved via stable isotope dilution by adding (13)C- and/or (15)N-labeled reference analytes. We also demonstrate the possibility of significantly expanding the number of MRM measurements during one single LC-MS run without compromising sensitivity by including elution time constraints for the targeted transitions, thus allowing quantification of large sets of peptides in a single analysis.  相似文献   

19.
Cardiovascular disease is the leading cause of mortality and morbidity in the industrialized world. Total worldwide deaths due to this disease are currently estimated at 17 million per year, and this number is expected to increase over the next several decades. To address this epidemic, a major effort has begun to develop new cardiovascular disease markers through the use of proteomic analysis, the global study of proteins. This review discusses strategies, recent technological advances and other issues in plasma/serum biomarker discovery for cardiovascular diseases. Emphasis lies on the needs for standardizing specimen collection, methods for reducing plasma proteome complexity to subproteomes, selection of appropriate technology platforms and strategies to evaluate candidates by multiplexed immune assays. The overall goal of this effort is to identify serum biomarkers for diagnosis, therapeutic monitoring and risk stratification of cardiovascular diseases.  相似文献   

20.
Blood-borne biomarkers are urgently required for the early detection, accurate diagnosis and prognosis of disease. Additionally, improved methods of profiling serum and plasma proteins for biomarker discovery efforts are needed. Herein, we report a quantitative method based on amino-group labelling of serum proteins (rather than peptides) with isobaric tandem mass tags (TMT) and incorporating immune-based depletion, gel-based and strong anion exchange separation of proteins prior to differential endoproteinase treatment and liquid chromatography tandem mass spectrometry. We report a generally higher level of quantitative coverage of the serum proteome compared to other peptide-based isobaric tagging approaches and show the potential of the method by applying it to a set of unique samples that pre-date the diagnosis of pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号