首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein α subunit that belongs to subgroup III of fungal Gα proteins. Δtga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression.  相似文献   

2.
3.
4.
The soil fungus Trichoderma atroviride, a mycoparasite, responds to a number of external stimuli. In the presence of a fungal host, T. atroviride produces hydrolytic enzymes and coils around the host hyphae. In response to light or nutrient depletion, asexual sporulation is induced. In a biomimetic assay, different lectins induce coiling around nylon fibers; coiling in the absence of lectins can be induced by applying cyclic AMP (cAMP) or the heterotrimeric G-protein activator mastoparan. We isolated a T. atroviride G-protein alpha-subunit (Galpha) gene (tgal) belonging to the fungal subfamily with the highest similarity to the Galpha1 class. Generated transgenic lines that overexpress Galpha show very delayed sporulation and coil at a higher frequency. Furthermore, transgenic lines that express an activated mutant protein with no GTPase activity do not sporulate and coil at a higher frequency. Lines that express an antisense version of the gene are hypersporulating and coil at a much lower frequency in the biomimetic assay. The loss of Tgal in these mutants correlates with the loss of GTPase activity stimulated by the peptide toxin Mas-7. The application of Mas-7 to growing mycelial colonies raises intracellular cAMP levels, suggesting that Tgal can activate adenylyl cyclase. In contrast, cAMP levels and cAMP-dependent protein kinase activity drop when diffusible host signals are encountered and the mycoparasitism-related genes ech42 and prb1 are highly expressed. Mycoparasitic signaling is unlikely to be a linear pathway from host signals to increased cAMP levels. Our results demonstrate that the product of the tga1 gene is involved in both coiling and conidiation.  相似文献   

5.
Plant tissue colonization by Trichoderma atroviride plays a critical role in the reduction of diseases caused by phytopathogenic fungi, but this process has not been thoroughly studied in situ. We monitored in situ interactions between gfp-tagged biocontrol strains of T. atroviride and soilborne plant pathogens that were grown in cocultures and on cucumber seeds by confocal scanning laser microscopy and fluorescence stereomicroscopy. Spores of T. atroviride adhered to Pythium ultimum mycelia in coculture experiments. In mycoparasitic interactions of T. atroviride with P. ultimum or Rhizoctonia solani, the mycoparasitic hyphae grew alongside the pathogen mycelia, and this was followed by coiling and formation of specialized structures similar to hooks, appressoria, and papillae. The morphological changes observed depended on the pathogen tested. Branching of T. atroviride mycelium appeared to be an active response to the presence of the pathogenic host. Mycoparasitism of P. ultimum by T. atroviride occurred on cucumber seed surfaces while the seeds were germinating. The interaction of these fungi on the cucumber seeds was similar to the interaction observed in coculture experiments. Green fluorescent protein expression under the control of host-inducible promoters was also studied. The induction of specific Trichoderma genes was monitored visually in cocultures, on plant surfaces, and in soil in the presence of colloidal chitin or Rhizoctonia by confocal microscopy and fluorescence stereomicroscopy. These tools allowed initiation of the mycoparasitic gene expression cascade to be monitored in vivo.  相似文献   

6.
7.
8.
We describe the cloning and characterization of a single copy gene from Trichoderma atroviride P1 encoding a novel 30 kDa chitinase, Ech30. Ech30 is a family 18 chitinase showing low sequence similarity to other Trichoderma chitinases. Real-time quantitative RT-PCR studies revealed that expression of the ech30 gene was induced by the presence of Botrytis cinerea in plate confrontation assays, but hardly by chitin in liquid cultures. Studies of Ech30 purified from an Escherichia coli strain overexpressing the ech30 gene devoid of the leader sequence and a predicted intron, showed that the gene encodes an active chitinase, which, as expected for family 18 chitinases, is inhibited by allosamidin.  相似文献   

9.
Mycoparasitism of fungal plant pathogens by Trichoderma species is a complex process that involves the production and coordinated secretion of cell-wall degrading enzymes. Genes implicated in mycoparasitism by Trichoderma atroviride contain motifs in the promoter region, designated MYRE1-MYRE4, that are proposed to act as binding sites for a global inducer of the mycoparasitic response. The aim of our study was to establish whether these motifs also were present in Trichoderma hamatum and whether the presence of these motifs could predict co-expression when T. hamatum was confronted by a pathogen. Using a combination of targeted, degenerate and inverse PCR, homologues of the mycoparasitism-related genes ech42 (chit42), prb1 and lam1.3 (xbg1.3-110), which encode an endochitinase, proteinase, and β-1,3-glucanase, respectively, were cloned and sequenced from T. hamatum. Alignment of the promoter regions of the three genes revealed identical regions in the chit42 and prb1 promoters, which were 6-9 base pairs in length and conserved in position. Specifically, the regulator y motifs MYRE1-MYRE4 were fully conserved, together with a fifth motif, identified by this research. A substrate assay designed to investigate the response of these genes from T. harzianum and T. hamatum to a simple carbon source (glycerol) showed that, in contrast to chit42 and prb1, xbg1.3-110 was not expressed. Further comparison of the expression patterns of these three genes between T. harzianum and T. hamatum using the glycerol substrate assay showed that no chit42 or prb1 expression could be detected in T. harzianum when it was grown under the same conditions as T. hamatum. This showed that the response of these genes to glycerol was species specific and that a single expression pattern for these genes was not common to all Trichoderma species. Confrontation assays were used to investigate the response of the three T. hamatum genes to the more complex substrate posed by the fungal pathogen Sclerotinia sclerotiorum. Once again gene expression analysis showed that both chit42 and prb1 were co-expressed and moderately induced during confrontation against Sclerotinia sclerotiorum. Although xbg1.3-110 previously had been implicated in mycoparasitism by T. harzianum, this study detected no xbg1.3-110 expression during confrontation between T. hamatum and S. sclerotiorum. These findings show that the MYRE1-MYRE4 together with MYRE5 are present in two species of Trichoderma, T. atroviride and T. hamatum and that the presence of these motifs could predict co-expression in response to two carbon sources.  相似文献   

10.
The chitinase genes of Trichoderma spp. (ech42, chit33, nag1) contain one or more copies of a pentanucleotide element (5'-AGGGG-3') in their 5'-noncoding regions. In Saccharomyces cerevisiae, this motif is recognized and bound by the stress response regulator proteins Msn2p/Msn4p. To test whether this motif in the chitinase promoters is bound by a Trichoderma Msn2/4p homolog, we have cloned a gene (seb1) from T. atroviride which encodes a C2H2 zinc-finger protein that is 62 (64)% identical to S. cerevisiae Msn2p (Msn4p) in the zinc-finger region, and almost identical to the G-box binding protein from Haematonectria haematococca and to polypeptides encoded by uncharacterized ORFs from Neurospora crassa and Aspergillus nidulans. Its zinc-finger domain specifically recognizes the AGGGG sequence of the ech42 and nag1 promoter in band-shift assays. However, a cDNA clone of seb1, when overexpressed in S. cerevisiae, was unable to complement a Delta msn2/4 mutant of S. cerevisiae. Levels of seb1 mRNA increased under conditions of osmotic stress (sorbitol, NaCl) but not under other stress conditions (cadmium sulfate, pH, membrane perturbance). A T. atroviride Delta seb1 strain, produced by transformation with a seb1 copy disrupted by insertion of the A. nidulans amdS gene, showed strongly reduced growth on solid medium, but grew normally in liquid medium. In liquid medium, growth of the disruption strain was significantly more inhibited by the presence of 1 M sorbitol and 1 M NaCl than was that of the wild-type strain. Despite the presence of AGGGG elements in the promoter of the chitinase gene nag1, no differences in its expression were found between the parent and the disruption strain. EMSA analyses with cell-free extracts obtained from the seb1 disruption strain showed the presence of proteins that could bind to the AGGGG-element in nag1 and ech42. We therefore conclude that seb1 encodes a protein that is involved in the osmotic stress response, but not in chitinase gene expression, in T. atroviride.  相似文献   

11.
The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents.  相似文献   

12.
A plate confrontation experiment is commonly used to study the mechanism by which Trichoderma spp. antagonize and parasitize other fungi. Previous work with chitinase gene expression (ech42) during the precontact period of this process in which cellophane and dialysis membranes separated Trichoderma harzianum and its host Rhizoctonia solani resulted in essentially opposite results. Here, we show that cellophane membranes are permeable to proteins up to at least 90 kDa in size but that dialysis membranes are not. ech42 was expressed during the precontact stage of the confrontation between Trichoderma atroviride and its host only if the cellophane was placed between the two fungi. These results are consistent with enzyme diffusion from T. atroviride to R. solani generating the trigger of ech42 gene expression.  相似文献   

13.
14.
The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase)-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD) of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ)(8) barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous glycoproteins in T. atroviride is discussed in relation to the observed phenotypes.  相似文献   

15.
16.
17.
We have investigated the regulation by N-acetyl-glucosamine of the nag1 gene of the mycoparasitic biocontrol fungus Trichoderma atroviride (= T. harzianum P1), which encodes a 73-kDa N-acetyl-beta-D-glucosaminidase. The use of translational fusions revealed that a 290-bp fragment of the 5' regulatory region of nag1 is sufficient to confer inducibility on the Aspergillus niger goxA gene. The region between positions -150 and -290, upstream of the nag1 coding region, was investigated using in vivo methylation protection analysis and electrophoretic mobility shift assays (EMSAs). Two neighbouring regions that interacted with regulatory proteins were identified, and bases essential for these interactions were determined in vitro. These data reveal protein binding to a CCCCT element at -240, a CCAGN(13)CTGG motif at -284, and a CCAAT-box which is present in the spacer of the latter motif. Evidence for the binding of a Hap2/3/5 complex to this CCAAT motif is presented. Protein binding to all three motifs was constitutive, and no differences were observed between induced and non-induced cultures. Mutation of either the CCAGN(13)CTGG or the AGGGG motif resulted in loss of inducibility of nag1 expression by N-acetyl-D-glucosamine in vivo.  相似文献   

18.
19.
Expression of the endochitinase encoding ech42 gene of the mycoparasite Trichoderma atroviride is subject to control by several environmental signals, including derepression by carbon starvation. In order to identify promoter areas involved in control by this condition, we prepared fusions of several mutant forms of the ech42 promoter to the Aspergillus niger goxA gene as a reporter. Removal of a 130-bp fragment comprising a binding site for the carbon catabolite repressor Cre1, an AGGGG element and three separate binding sites identical and highly similar, respectively, to those for the Aspergillus nidulans regulator of conidiation BrlA resulted in a three-fold increase in derepression under carbon starvation. A truncation of the promoter to 196 bp, which removed all of the observed DNA binding motifs, resulted in five-fold derepression. In vitro protein-DNA binding analyses showed that only the BrlA-like sites, but neither the AGGGG element nor the Cre1 binding site, bound proteins from cell-free extracts from carbon-starved mycelia of T. atroviride. Thus this study identifies a new regulator of chitinase gene expression in Trichoderma, a BrlA-like binding motif.  相似文献   

20.
This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号