首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Biofilms are considered to be highly resistant to antimicrobial agents. Strictly speaking, this is not the case-biofilms do not grow in the presence of antimicrobials any better than do planktonic cells. Biofilms are indeed highly resistant to killing by bactericidal antimicrobials, compared to logarithmic-phase planktonic cells, and therefore exhibit tolerance. It is assumed that biofilms are also significantly more tolerant than stationary-phase planktonic cells. A detailed comparative examination of tolerance of biofilms versus stationary- and logarithmic-phase planktonic cells with four different antimicrobial agents was performed in this study. Carbenicillin appeared to be completely ineffective against both stationary-phase cells and biofilms. Killing by this beta-lactam antibiotic depends on rapid growth, and this result confirms the notion of slow-growing biofilms resembling the stationary state. Ofloxacin is a fluoroquinolone antibiotic that kills nongrowing cells, and biofilms and stationary-phase cells were comparably tolerant to this antibiotic. The majority of cells in both populations were eradicated at low levels of ofloxacin, leaving a fraction of essentially invulnerable persisters. The bulk of the population in both biofilm and stationary-phase cultures was tolerant to tobramycin. At very high tobramycin concentrations, a fraction of persister cells became apparent in stationary-phase culture. Stationary-phase cells were more tolerant to the biocide peracetic acid than were biofilms. In general, stationary-phase cells were somewhat more tolerant than biofilms in all of the cases examined. We concluded that, at least for Pseudomonas aeruginosa, one of the model organisms for biofilm studies, the notion that biofilms have greater resistance than do planktonic cells is unwarranted. We further suggest that tolerance to antibiotics in stationary-phase or biofilm cultures is largely dependent on the presence of persister cells.  相似文献   

2.
Several clones of nonproducing cells were isolated from a continuous culture of hybridoma cells, which were originally producing antibody. Their behavior was compared to that of the producing cells in batch culture. The growth kinetics of five out of six clones exhibited higher specific growth rate, higher yield of cell mass on glutamine, and lower yields of lactate and ammonium. The implications of the comparisons for growth of hybridoma cultures are discussed.  相似文献   

3.
Bacterial resistance to inactivation by antibacterial agents that is induced by the growth environment was studied. Escherichia coli was grown in batch culture and in a chemostat, and the following parameters were varied: type of substrate, growth rate, temperature, and cell density during growth. Low doses (0.75 mg/liter) of chlorine dioxide were used to inactivate the cultures. The results demonstrated that populations grown under conditions that more closely approximated natural aquatic environments were more resistant than those grown under commonly employed batch culture conditions. In particular, bacteria grown at submaximal rates were more resistant than their counterparts grown at mumax. The most resistant populations encountered in this study were those grown at D values of 0.02 h-1 and 0.06 h-1 at 25 degrees C. Growth at 15 degrees C led to greater resistance than did growth at 37 degrees C. The conditions that produced relatively resistant phenotypes were much closer to those found in most natural environments than are the typical conditions of batch culture methods. The importance of major physiological changes that can be induced by the antecedent growth environment is discussed in light of the possible modes of action of several disinfectants.  相似文献   

4.
The multiple antibiotic resistance (mar) operon is a global regulator controlling the expression of various genes in Escherichia coli which constitutes the mar regulon. Upregulation of mar leads to a multi-drug resistant phenotype, which includes resistance towards structurally unrelated antibiotics, organic solvents and the disinfectant pine oil. Biofilms also display similar decreases in susceptibility to antimicrobial agents. A marOII-lacZ fusion strain (SPC105) of E. coli was used to monitor mar expression under various growth conditions including batch, continuous and biofilm culture. In chemically-defined media (CDM), mar expression was maximal in mid-log and declined in the stationary phase. Conversely, in rich media (Luria-Bertani broth), minimal expression in mid-log was followed by an increase in the stationary phase. In continuous culture, expression was inversely related to specific growth rate (mu = 0.05-0.4 h-1). LacZ expression by the marOII-lacZ fusion was generally low within the total biofilm population and equivalent to that of stationary phase cultures grown in batch culture. When the expression of mar in CDM batch culture was compared with that in biofilm populations, beta-galactosidase activity was generally higher throughout batch culture than in the attached population. Overall, these results suggest that while mar expression will be greatest within the depths of a biofilm where growth rates are suppressed, its probable induction within biofilms cannot explain the elevated levels of antibiotic resistance observed.  相似文献   

5.
Escherichia coli JM103[pUC8] was employed as a model to investigate the behavior of a recombinant microbial system harboring a plasmid at high copy numbers. Experiments with batch and continuous cultures of recombinant and plasmid-free cells were conducted in a well-controlled bio-reactor. In batch experiments, plasmid copy number varied typically from an average of 500 during the exponential growth phase to as high as 1250 during the stationary phase. While the segregational plasmid instability was negligible in batch experiments, severe segregational instability occurred in continuous experiments conducted over a range of dilution rates, resulting in complete loss of plasmid-bearing cells from the continuous cultures within few residence times after transition to continuous operation. The profound differences in the specific growth rates and mass yields of the plasmid-free and plasmid-bearing cells resulting from the extra metabolic burden on the plasmid-bearing cells mainly due to excessive plasmid DNA content was the major cause for the plasmid instability. Plasmid multirnerization was detected in batch and continuous cultures and was found to have significant influence on the effective copy number and was partially responsible for the severe segregational instability in continuous cultures. A quasi-steady state representative of plasmid-bearing cells was established in the initial portion of each continuous culture experiment. Due to the profound growth rate differential between the two types of cells, transients of considerable duration were observed in each continuous culture experiment (initiated with a pure culture of plasmid bearing cells) following the slow accumulation of plasmid-free cells near the end of the quasi-steady state. Significant variations in various culture parameters (including a rapid decline in the plasmid-bearing fraction of the total cell population) occurred during this period, leading ultimately to a steady state for a culture dominated entirely by plasmid-free cells. In continuous cultures, plasmid copy number during the quasi-steady states increased with decreasing dilution rate from 50 (at 0.409 h(-1)) to 941 (at 0.233 h(-1)). Production of the plasmid-encoded protein (beta-lactamase) in these experiments was maximized at an intermediate dilution rate, corresponding to an optimum copy number of about 450. A similar optimum copy number was observed in batch cultures. Significant excretion of beta-lactamase was observed at both low and high dilution rates.  相似文献   

6.
AIMS: Chlorate kills Escherichia coli O157:H7 and may be an effective feed additive for use in food animals. This study was designed to determine if development of chlorate-resistant E. coli O157:H7 strains was likely. METHODS AND RESULTS: Escherichia coli O157:H7 was chlorate-sensitive, but became chlorate-resistant in pure batch culture and in sterilized faecal fluid; it was killed in mixed culture and did not become resistant. Addition of chlorate to continuous pure cultures caused chlorate resistance, but chlorate addition to mixed continuous culture eliminated E. coli O157:H7 and no resistance occurred. Piglets challenged with E. coli O157:H7 were treated with chlorate; populations were reduced and colonies were always chlorate-sensitive. CONCLUSION: Chlorate-resistant E. coli O157:H7 can be selected in pure, but not mixed culture, and results suggest that terminal chlorate feeding will not select for chlorate-resistance in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: Chlorate can reduce food-borne pathogens prior to harvest, but development of resistance does not appear likely in vivo.  相似文献   

7.
When growing populations of bacteria are confronted with bactericidal antibiotics, the vast majority of cells are killed, but subpopulations of genetically susceptible but phenotypically resistant bacteria survive. In accord with the prevailing view, these “persisters” are non- or slowly dividing cells randomly generated from the dominant population. Antibiotics enrich populations for pre-existing persisters but play no role in their generation. The results of recent studies with Escherichia coli suggest that at least one antibiotic, ciprofloxacin, can contribute to the generation of persisters. To more generally elucidate the role of antibiotics in the generation of and selection for persisters and the nature of persistence in general, we use mathematical models and experiments with Staphylococcus aureus (Newman) and the antibiotics ciprofloxacin, gentamicin, vancomycin, and oxacillin. Our results indicate that the level of persistence varies among these drugs and their concentrations, and there is considerable variation in this level among independent cultures and mixtures of independent cultures. A model that assumes that the rate of production of persisters is low and persisters grow slowly in the presence of antibiotics can account for these observations. As predicted by this model, pre-treatment with sub-MIC concentrations of antibiotics substantially increases the level of persistence to drugs other than those with which the population is pre-treated. Collectively, the results of this jointly theoretical and experimental study along with other observations support the hypothesis that persistence is the product of many different kinds of errors in cell replication that result in transient periods of non-replication and/or slowed metabolism by individual cells in growing populations. This Persistence as Stuff Happens (PaSH) hypothesis can account for the ubiquity of this phenomenon. Like mutation, persistence is inevitable rather than an evolved character. What evolved and have been identified are genes and processes that affect the frequency of persisters.  相似文献   

8.
The fast growth and acid production of a strain of Pediococcus pentosaceus , used as a starter culture in the production of dry sausages, was dependent on the presence of acetate. In a batch culture on a mixture of glucose and sucrose both sugars were consumed simultaneously. Similar growth rates and product yields were obtained on glucose and sucrose, d - AND l -lactate were produced via a D- and L-lactate dehydrogenase (LDH), respectively, and no racemase was present. In batch cultures about 15% of the lactic acid produced was the D-isomer, whereas in a sucrose-limited, continuous culture the fraction of D-lactic acid increased with decreasing dilution rate. The results are discussed in relation to the two LDH activities.  相似文献   

9.
In this paper the results of the Monte Carlo simulations as described in an earlier paper are compared with those of batch experiments. A number of batch experiments were carried out at a low inoculation rate so that only a fraction of the oil drops were inoculated. Under these conditions the effect of the segregation of the oil phase is more clearly demonstrated. Special attention is paid to the preparation of actively growing yeast cells with which the cultures is inoculated. Also a method is developed to estimate the amount of actively growing cells with which the culture is inoculated. The other parameters necessary for the Monte Carlo simulation are measured in separate experiments: the maximum growth rate of the cells, oil drop size, and the drop parameters. Finally the growth curves (measured in the batch experiments) are compared with those calculated with the Monte Carlo procedure. A good agreement is found.  相似文献   

10.
For the mouse hybridoma cell line VO 208, kinetics of growth, consumption of glucose and glutamine, and production of lactate, ammonia and antibodies were compared in batch and continuous cultures. At a given specific growth rate, different metabolic activities were observed: a 40% lower glucose and glutamine consumption rate, but a 70% higher antibody production rate in continuous than in batch culture. Much higher metabolic rates were also measured during the initial lag phase of the batch culture. When representing the variation of the specific antibody production rate as a function of the specific growth rate, there was a positive association between growth and antibody production in the batch culture, but a negative association during the transient phase of the continuous culture. The kinetic differences between cellular metabolism in batch and continuous cultures may be result of modifications in the physiology and metabolism of cells which, in continuous cultures, were extensively exposed to glucose limitations.Institut National Polytechnique de Lorraine, ENSAIA BP 172, 2 avenue de la forêt de Haye, 54505, Vandoeuvre Cedex France  相似文献   

11.
AIMS: To quantify the influence of the growth phase, storage temperature and nutritional quality of the plate count medium on the apparent viability of Mannheimia haemolytica during storage at different temperatures. METHODS AND RESULTS: Mannheimia haemolytica was grown in shake flasks and in aerobic continuous culture to investigate factors affecting cell viability during storage, which was determined using plate counts on different media and epifluorescence microscopy. The high specific death rates of cells harvested after cessation of exponential growth and stored at 22, 4, -18 and -75 degrees C could be related to the rapid onset of exponential death in batch cultures. Yeast extract supplementation of the culture medium increased the viability of cells at most of the above-mentioned storage temperatures. Of the total cell count in continuous culture, only 48% could be recovered on brain-heart infusion agar, whereas supplementation of the agar medium with foetal calf serum increased the plate count to 71% of the total count. CONCLUSIONS: Mannheimia haemolytica cells harvested from the exponential growth phase had the highest survival rate during storage at low temperatures. Plate count values also depended on the nutritional quality of the agar medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Results presented here impact on the procedures for culture preservation and plate count enumeration of this fastidious animal pathogen.  相似文献   

12.
The growth of Streptococcus cremoris on a semidefined medium was studied at initial lactose concentrations of 0.2-5.0% in batch culture, and in lactose-limited chemostat cultures at 0.5% lactose. Kinetic analysis of the batch data, using statisitcal techniques, indicated the importance of lactose limitation and lactic acid inhibition of the growth of S. cremoris. A model for the biomass production, lactose utilization, and lactic acid production in batch culture was proposed. In continuous culture, it was found that steady state populations were maintained at higher dilution rates (D = 0.6-0.7 h-1) than the maximum predicted by batch culture (0.56h-1). No evidence for a selection of fast growing mutants was obtained. Copious growth adhering to the walls of the fermentor (i.e. wall growth) occurred very rapidly at higher dilution rates and this undoubtedly affected steady-state growth and wash-out and, as a consequence, the apparent maximum dilution rate.  相似文献   

13.
Mutants of Escherichia coli variably resistant to bacteriophage T1   总被引:1,自引:0,他引:1  
Carta, Guy R. (Rutgers, The State University, New Brunswick, N.J.), and Vernon Bryson. Mutants of Escherichia coli variably resistant to bacteriophage T1. J. Bacteriol. 92:1055-1061. 1966.-Mutants resistant to bacteriophage T1 were isolated from ultraviolet (UV)-irradiated cultures of Escherichia coli B/r, a UV-resistant variant. Bacterial populations derived from some of these mutants were partially but not completely resistant to the bacteriophage. Such mutants, designated variably resistant (B/r/1v), could not be obtained from E. coli B. Phage-free mutant populations taken from different stages in growth consisted of significantly different proportions of T1-resistant and T1-sensitive cells. The growth stage-dependent range of variation exceeded 1,000-fold. In broth cultures, the highest proportion of resistant cells consistently appeared at mid-log phase, and the highest proportion of sensitive cells at lag and stationary phases. Comparable evidence for environmentally dependent changes in host-cell phenotype was obtained by efficiency of plating and cloning efficiency analysis tests. Micromanipulation showed that, in clones growing in the presence of phage T1, sensitive bacteria appeared with high frequency and underwent lysis.  相似文献   

14.
An issue on the cellular forms that ensure survival of pseudomonads is important due to wide occurrence of these bacteria in the environment and their role for clinical microbiology. The present work demonstrates the high survival potential of Pseudomonas aurantiaca and P. аeruginosa in the mass of exopolymers produced by cells. Exopolymer formation occurred only during incubation of the post-stationary phase cultures of P. aurantiaca (at 4°C) and P. aeruginosa (at 4 and 20°C). After storage for 1.5–12 months, the number of colony-forming units in the exopolymer was 30 to 68% of the viable cell titer in stationary-phase cultures. Antibiotic-tolerant persister cells that were revealed in the exopolymer cultures after treatment with ciprofloxacin (2.5–100 μg/mL) were more resistant to the antibiotic than persisters in suspension cultures, with the threshold doses of 25 and 2.5 μg/mL, respectively. The cells embedded in the exopolymer were found to be more resistant to 5-min heating at 60–70°C than the vegetative cells of suspension cultures, which did not survive such heat treatment conditions. Electron microscopic investigation revealed morphological heterogeneity of exopolymer-embedded pseudomonads, including the presence of the cells similar to cystlike dormant forms. The populations developing on solid media inoculated with the exopolymer mass with cells were found to contain 1.5 to 2 orders of magnitude more persisters tolerant to high ciprofloxacin doses (25 μg/mL for P. aurantiaca and 100 μg/mL for P. aeruginosa) than the populations developing after inoculation with second-transfer vegetative cells of the cells of planktonic cultures. The results obtained improve our understanding of pseudomonad survival in the environment.  相似文献   

15.
The majority of cells transferred from stationary-phase culture into fresh medium resume growth quickly, while a few remain in a nongrowing state for longer. These temporarily nonproliferating bacteria are tolerant of several bactericidal antibiotics and constitute a main source of persisters. Several genes have been shown to influence the frequency of persisters in Escherichia coli, although the exact mechanism underlying persister formation is unknown. This study demonstrates that the frequency of persisters is highly dependent on the age of the inoculum and the medium in which it has been grown. The hipA7 mutant had 1,000 times more persisters than the wild type when inocula were sampled from younger stationary-phase cultures. When started after a long stationary phase, the two displayed equal and elevated persister frequencies. The lower persister frequencies of glpD, dnaJ, and surA knockout strains were increased to the level of the wild type when inocula aged. The mqsR and phoU deletions showed decreased persister levels only when the inocula were from aged cultures, while sucB and ygfA deletions had decreased persister levels irrespective of the age of the inocula. A dependency on culture conditions underlines the notion that during screening for mutants with altered persister frequencies, the exact experimental details are of great importance. Unlike ampicillin and norfloxacin, which always leave a fraction of bacteria alive, amikacin killed all cells in the growth resumption experiment. It was concluded that the frequency of persisters depends on the conditions of inoculum cultivation, particularly its age, and the choice of antibiotic.  相似文献   

16.
AIMS: The aim of this work was to study the effects of prolonged nutrient stress on survival, cell interactions and resistance to inimical processes in Salmonella serotype Typhimurium. METHODS AND RESULTS: Salmonella Typhimurium cells were subjected to prolonged incubation in the stationary phase of growth and the properties of starved cells (old) were investigated with reference to those of exponentially-growing cells (young). Competition experiments between old and young cells revealed cell-cell interactions that influenced stationary phase survival and response of the bacterium to heat stress. During prolonged incubation of cells, cycles of resistance and sensitivity to heat stress were identified. Competition experiments between old and young cells revealed that the resistance of young cells to heat increased to levels more like those of stationary phase cells than growing cells. The presence of old cells influenced the phenotype of young cells, possibly by means of cell-cell interactions. There was no evidence for the involvement of any extracellularly-produced factors in this phenomenon, but a requirement that the old competitor cells be viable could be demonstrated. CONCLUSIONS: It is proposed that the complex interactions within stationary phase cultures of Salm. Typhimurium may be due to cycles of mutation in concert with an as yet undefined interaction between old cells and growing ones. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides evidence for active and diverse responses to nutrient stress within populations of Salm. Typhimurium that promote survival and that may be important for the success of this bacterium as a pathogen.  相似文献   

17.
Bacterial populations can use bet‐hedging strategies to cope with rapidly changing environments. One example is non‐growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact‐dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI‐mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon‐mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density‐dependent bet‐hedging strategy, where the fraction of non‐growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts.  相似文献   

18.
Water stress plating hypersensitivity of yeasts   总被引:4,自引:0,他引:4  
Saccharomyces cerevisiae, when growing exponentially in batch culture, passed through a phase in which, on average, one cell in 10(4) survived plating onto a low water activity (aw) agar medium. Stationary phase cultures were resistant as were all other species tested, with the exception of Candida krusei. In continuous culture, S. cerevisiae was more resistant at low than at high dilution rates. Plating at low aw was lethal to those cells that were not protected by an adequate content of compatible solute. In naturally resistant yeasts and in S. cerevisiae that had been exposed to an adaptation process, the compatible solute was one or more types of polyhydric alcohol. Resistance in stationary phase was attributable to a different cause.  相似文献   

19.
Pseudomonas fluorescens (ATCC 11150) was grown in batch and continuous culture in minimal media with sodium maleate as growth-limiting sole organic carbon source. Growth was followed by turbidity and dry weight measurements. Gross composition of washed cells (relative amounts of protein, lipid, RNA, and DNA) and the distribution of amino acids in protein hydrolyses of the cells were determined for cells grown in continuous culture at various dilution rates. Extracellular concentrations of the original carbon source and a number of metabolites were monitored by a total carbon analysis, ion exchange chromatography, and ultraviolet-visible scans of cell-free supernatants and chromatographic fractions, thereof. Substrate inhibition by maleate was a major factor in the growth kinetics of both batch and continuous cultures. Excessive maleate concentration caused instability in continuous cultures. By appropriate operation, much higher specific growth rates (0.305/hr) could ultimately be achieved in continuous culture compared to batch culture (0.174/hr). Adaptation was responsible for only part of the differences between batch and continuous cultures; the differing distribution of metabolites were also major factors.  相似文献   

20.
AIMS: The effect of immobilization and long-term continuous culture was studied on probiotic and technological characteristics of lactic acid and probiotic bacteria. METHODS AND RESULTS: A continuous culture in a two-stage system was carried out for 17 days at different temperatures ranging from 32 to 37 degrees C, with a first reactor containing Bifidobacterium longum ATCC 15707 and Lactococcus lactis subsp. lactis biovar. diacetylactis MD immobilized separately in gel beads, and a second reactor operated with free cells released from the first reactor. The tolerance of free cells from both strains produced in the effluent medium of both reactors to hydrogen peroxide, simulated gastric and intestinal juices, antibiotics and nisin, and freeze-drying markedly increased with culture time and was generally higher after 6 days than that of stationary-phase cells produced during free-cell batch fermentations. The reversibility of the acquired tolerance of B. longum, but not L. diacetylactis, to antibiotics was shown during successive free-cell batch cultures. CONCLUSIONS: Free cells produced from continuous immobilized-cell culture exhibited altered physiology and increased tolerance to various chemical and physico-chemical stresses. SIGNIFICANCE AND IMPACT OF THE STUDY: Continuous culture with immobilized cells could be used to produce probiotic and lactic acid bacteria with enhanced technological and probiotic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号