首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of highly purified gastric inhibitory polypeptide (GIP) on immunoreactive insulin (IRI) secretion in the conscious fasted dog was investigated. Significant increases in IRI release were observed with intravenous administration of three different doses of GIP. These were accompanied by depression in fasting serum-glucose levels. Preliminary studies were undertaken to determine whether this insulinotropic action of GIP could be attributed to a particular segment of the GIP molecule. GIP fragments produced by cleavage with cyanogen bromide and trypsin showed no significant stimulation of IRI release. The possibility that GIP might itself enhance glucose uptake or potentiate insulin-induced glucose uptake was studied with the rat hemidiaphragm preparation. No such effect was observed. In the light of this and other recent work, it is concluded that GIP is a strong candidate for an active principle in the enteroinsular axis.  相似文献   

2.
D G Johnson  V Conley 《Life sciences》1980,27(24):2373-2380
Following intravenous infusion of somatostatin in vivo occasionally there is a large rebound overshoot of insulin release. An in vitro model to simulate this phenomenon was made by perfusing rat pancreas with gastric inhibitory polypeptide (GIP) during simultaneous perfusion with somatostatin. Adding GIP (100 ng/ml) to the perfusate for 2 minutes beginning either 3 or 9 minutes before terminating the somatostatin perfusion produced a large overshoot in insulin release. The magnitude of overshoot was greater when medium contained 300 mg/dl glucose that when it contained 150 mg/dl glucose. Perfusion with GIP for 2 minutes beginning 9 minutes before increasing the glucose concentration of the medium from 30 to 300 mg/dl elicited a large increase in both the acute and second-phase release of insulin. These suggest that post-inhibitory overshoot of insulin release after somatostatin may be produces in vitro by the suppressed action of stimulatory hormones such as GIP. Prior infusion with GIP can also potentiate glucose-stimulated insulin increase.  相似文献   

3.
The dose-dependent effect of intravenously infused synthetic somatostatin-14 on basal and postprandial insulin and gastrin release was assessed in anesthetized rats.Infusion of 1 ng · kg?1 · min?1 elicited a significant reduction of basal and postprandial insulin levels compared to the saline control group. At 15 ng · kg?1 · min?1 basal insulin was not affected but postprandial insulin levels were still significantly reduced. At 30 ng · kg?1 · min?1 neither basal nor stimulated insulin levels were affected. At the highest concentration of 120 ng · kg?1 · min?1 basal and postprandial insulin levels were suppressed similar to the lowest infusion rate of 1 ng · kg?1 · min?1. Basal gastrin levels were significantly reduced only at the highest rate of 120 ng · kg?1 · min?1. A significant reduction of postprandial gastrin levels was observed at 15 ng · kg?1 · min?1 and all higher infusion rates employed. Measurements of plasma somatostatin-like immunoreactivity (SLI) demonstrated that plasma SLI levels during the lowest infusion rate of 1 ng · kg?1 · min?1 were not different from the controls. No significant rise of plasma SLI levels was observed in response to the test meal. The higher infusion rates elicited a dose-dependent increase in plasma SLI levels. These data demonstrate that in rats somatostatin exerts a biological effect on insulin release at very low doses while certain greater infusion rates have no suppressive effect. Gastrin secretion is inhibited in a more linear pattern.  相似文献   

4.
Several members of the secretin family of hormones have been demonstrated to alter anterior pituitary hormone secretion. Here we report the action of gastric inhibitory polypeptide (GIP) on gonadotropin and somatotropin release. Intraventricular injection of 1 microgram (0.2 nmole) GIP (2.5 microliters) produced a significant decrease in plasma FSH at 30 (p less than 0.02) and 60 min after its injection (p less than 0.01). The FSH-lowering effect of a higher dose of 5 micrograms (1 nmole) of GIP was already developed at 15 min (p less than 0.01) and was prolonged until the end of the experiment (60 min, p less than 0.05). No change in plasma LH was detected at any time during the experimental period. If 5 micrograms of estradiol-benzoate were given SC 48 hr prior to experiment, the initial values of FSH and LH were markedly decreased. In these animals GIP failed to influence plasma FSH and LH. When dispersed anterior pituitary cells from OVX rats were cultured overnight and incubated in vitro with GIP, the peptide was found to induce both FSH and LH release. Highly significant release occurred with the lowest dose tested of 10(-7) M and there was a dose-response effect for both hormones. The slope of the dose-response curve was similar for both FSH and LH release. GIP was less potent than LHRH which produced a greater stimulation of both FSH and LH release at a dose of 10(-9) M than did 10(-7) M GIP. The two peptides had an additive effect on the release of both FSH and LH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [14C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [14C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.  相似文献   

6.
Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.  相似文献   

7.
Feeding raises the plasma concentrations of a number of gut-related hormones that may, in turn, influence the metabolism of peripheral tissues. This study investigated the effects of gut-related hormones on lipogenesis in explants from three differing adipose depots in lambs (aged 4-9 months). Incorporation of [14C]-acetate into lipid was measured over a 2-h period, following 24 h pre-incubation in the presence of hormone combinations. In perirenal fat explants, gastric inhibitory polypeptide (GIP) in the concentration range 0.01-10 nM stimulated lipogenesis. Maximal effects were seen at 1 nM (an average increase of 64% over basal values). In contrast, in the presence of insulin (0.1 nM), a dose-dependent decrease in lipogenesis was seen with increasing GIP concentration (P < 0.001 for the insulin x GIP interaction). Epidermal growth factor (EGF) and somatostatin in the same concentration range each inhibited lipogenesis. both in the presence and the absence of insulin (P < 0.001 in each case). Subcutaneous (back) fat and intermuscular (popliteal) fat responded similarly to each other, but significantly differently from the perirenal depot (P < 0.001). Here GIP, somatostatin or EGF (each at 1 nM) all separately stimulated lipogenesis.  相似文献   

8.
9.
Blood glucose, gastric inhibitory polypeptide (GIP), vasoactive intestinal polypeptide (VIP) and gastrin secretions were measured over a three-hour period following the ingestion by normal subjects of a mixed meal with two different caloric levels (1055 Kcal and 1192 Kcal). No VIP secretion was observed after either meal. Gastrin release was not modified by the increase of caloric intake (mainly carbohydrates and lipids), whereas GIP secretion was significantly more important after the meal with the highest caloric value (peak at 30 mn: 499.5±250.4 vs. 273.4±128.7 pg/ml and integrated response 53.3±20.5 vs. 28.2±9.9 ng×ml?1×180 min?1?p<0.05). This difference could not be attributed to glucose since the blood glucose levels were not significantly different. It is more probably related to the total amount of ingested food. This suggests the existence of rapid mechanisms of adaptation to the incoming load of the GIP-producing cells.  相似文献   

10.
11.
Glucose-dependent insulinotropic polypeptide (GIP) release has been demonstrated predominantly after ingestion of carbohydrate and fat. These studies were conducted to determine the effects of protein on GIP expression in the rat. Whereas no significant changes in duodenal mucosal GIP mRNA levels were detected in response to peptone, the duodenal GIP concentration increased from 8.4+/-1.5 to 19.8+/-3.2 ng GIP/mg protein at 120 min (P<0.01). Plasma GIP levels also increased from 95+/-5.2 pg/ml to a peak of 289+/-56.1 pg/ml at 120 min (P<0.01). To determine whether the effects of protein on GIP were due to stimulation of acid secretion, rats were pretreated with 10 mg/kg omeprazole, after which mucosal and plasma GIP concentrations were partially attenuated. To further examine the effects of luminal acid, rats were administered intraduodenal 0.1 M HCl for 120 min, which significantly enhanced GIP expression. These studies indicate that nutrient protein provides a potent stimulus for GIP expression in the rat, an effect that occurs at the posttranslational level and may be mediated in part through the acid-stimulatory properties of protein. The effects of acid on GIP are consistent with a role for GIP as an enterogastrone in the rat.  相似文献   

12.
The objective of this study was to determine whether bombesin- or gastrin-releasing peptide-induced release of insulin occurs before or after the release of gastric inhibitory polypeptide (GIP) in rats. The present results demonstrate that GIP release occurs before insulin release and suggest that bombesin-like peptides and GIP interact to stimulate insulin secretion.  相似文献   

13.
The association of obesity with type 2 diabetes mellitus has been recognized for years. In type 2 diabetes, there is a possibility that an important part of the impaired insulin secretion is due to the gastric inhibitory polypeptide (GIP) hormone. This study investigated changes that occur in the pancreatic GIP receptors' (GIP-Rs) expression and in GIP secretion in obese and type 2 diabetic rats and its relation to plasma glucose and insulin levels during oral glucose tolerance test (OGTT) compared to control rats. During the first 20 min of the OGTT, both the obese and the diabetic rats had a significant increase in the glucose excursion and a significant decrease in early-insulin secretion compared to the control group, with more prominent changes in the diabetic group. The obese rats had a significant increase in fasting GIP level and in the incremental change of GIP from 0 to 20 min (GIP Delta 0-20: 60.1 + or - 6.66 pmol/l) compared to that of the control (33.96 + or - 4.69 pmol/l) and the diabetic (29.34 + or - 2.62 pmol/l) group, which were not significantly different from each other. However, there was a significant decrease in GIP-Rs expression in both the obese (88.07 + or - 10.36 microg/ml) and diabetic (87.51 + or - 4.72 microg/ml) groups compared to the control group (120.35 + or - 8.06 microg/ml). During the second hour of the OGTT, plasma GIP was decreasing in all groups, however, the obese group had a significant hyperinsulinemia compared to the other two groups. Moreover, the diabetic group had a significantly lower plasma insulin level until the 90 min interval and thereafter it showed a non-significant difference compared to the control group. In conclusion, both obese and diabetic rats had an impaired early-phase insulinotropic effect of GIP due to impaired gene expression of GIP-Rs which could be a potential target to prevent transition of obesity to diabetes and to improve insulin secretion in the latter.  相似文献   

14.
15.
16.
The present study is an investigation of the effects of 16 and 48 hours starvation on gastric somatostatin release using the isolated perfused rat stomach. Before sacrifice the body weights and blood glucose levels of fasted rats were significantly lower than fed rats. In the presence of 4.4 mM glucose, basal somatostatin concentrations in the stomach perfusate of fasted rats were also significantly lower. Gastric somatostatin release was stimulated in all three groups similarly by 5 × 10?8 M glucagon when the decrease in basal levels is considered. These results suggest that gastric somatostatin as well as pancreatic somatostatin contributes to nutrient homeostasis and that nutrient homeostasis influences somatostatin levels in turn.  相似文献   

17.
In this work we have investigated the effect of somatostatin on the secretion of human pancreatic polypeptide (HPP). In a group of five gastrectomized patients, somatostatin infusion induced a significant decline of fasting HPP plasma levels and completely abolished HPP response to oral glucose. Upon somatostatin withdrawal, HPP concentrations returned to pre-experimental values. These data add a new hormone to the list of those inhibited by somatostatin.  相似文献   

18.
Inhibition of gastric inhibitory polypeptide signaling prevents obesity   总被引:25,自引:0,他引:25  
Secretion of gastric inhibitory polypeptide (GIP), a duodenal hormone, is primarily induced by absorption of ingested fat. Here we describe a novel pathway of obesity promotion via GIP. Wild-type mice fed a high-fat diet exhibited both hypersecretion of GIP and extreme visceral and subcutaneous fat deposition with insulin resistance. In contrast, mice lacking the GIP receptor (Gipr(-/-)) fed a high-fat diet were clearly protected from both the obesity and the insulin resistance. Moreover, double-homozygous mice (Gipr(-/-), Lep(ob)/Lep(ob)) generated by crossbreeding Gipr(-/-) and obese ob/ob (Lep(ob)/Lep(ob)) mice gained less weight and had lower adiposity than Lep(ob)/Lep(ob) mice. The Gipr(-/-) mice had a lower respiratory quotient and used fat as the preferred energy substrate, and were thus resistant to obesity. Therefore, GIP directly links overnutrition to obesity and it is a potential target for anti-obesity drugs.  相似文献   

19.
We studied the effect of the intravenous infusion of 16,16-dimethylprostaglandin E2 methyl ester (di-M-PGE2) and somatostatin on bombesin-stimulated gastric acid secretion, plasma gastrin and plasma pancreatic polypeptide in four chronic gastric fistula dogs. Bombesin-stimulated gastric acid secretion was significantly inhibited by somatostatin and virtually abolished by di-M-PGE2. Both agents caused significant, but indistinguishable inhibition of gastrin release (P less than 0.05). Bombesin-stimulated pancreatic polypeptide release was also significantly inhibited by both somatostatin and di-M-PGE2; the inhibitory effect of somatostatin was significantly greater than that of di-M-PGE2 (P less than 0.05). This study provides further evidence in support of the complex interrelationships between agents responsible for the modulation of gastrointestinal physiology.  相似文献   

20.
A superfusion model was used to study in vitro gastric inhibitory polypeptide (GIP) release from hamster small intestinal mucosa. A 10% glucose solution, in both fed and fasted hamsters, produced a prompt, sustained, three-fold rise in mean GIP release. In contrast, superfusion of a solution of 10% mannitol did not alter release of the peptide. This model provides potential for elucidation of the mechanisms through which glucose and other agents release GIP and other gastrointestinal peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号