首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adrenocorticotropic hormone (ACTH) on the intracellular concentration of cyclic nucleotides was studied in cultures of neurons from embryonic chick cerebral hemispheres. Incubation of neurons with ACTH(1-24) in the presence of phosphodiesterase inhibitor isobutylmethylxanthine resulted in a sustained increase in cyclic AMP while rise in cyclic GMP level was transient. The values obtained for half-maximal stimulation were 0.5 microM and 0.03 nM for cyclic AMP and cyclic GMP respectively. Concomitantly, ACTH(1-24) stimulated guanylate cyclase activity (half-maximal stimulation at 0.02 nM). These results suggest the existence of two distinct populations of ACTH receptors in neurons and provide the first evidence that cyclic GMP does mediate the action of ACTH in neurons.  相似文献   

2.
Cell cultures derived from mouse and rat brain and consisting mainly of astroblasts are known to respond to several hormones by increasing or decreasing their intracellular concentration of cyclic AMP. In the present study these cultures were analyzed for their susceptibility to various additional hormonal and other neuroactive compounds. Only the peptides of the corticotropin (ACTH)/melanotropin (MSH) family were found active. Their potency for elevating the intracellular level of cyclic AMP decreases in the sequence (values for the half-maximally stimulating concentrations, EC50, in parentheses) ACTH-(1-24) (10 m) greater than alpha-,beta-MSH (30 nm) greater than ACTH (greater than or equal to 100 nm) gamma-MSH, ACTH-(1-10), -(4-10), -(4-11) (greater than or equal to 0.5 microM). The lack of additivity of the maximal effects of the peptides suggests that they all act at the same receptor. The stimulation exerted by these peptides is partially suppressed by hormones known to inhibit cyclic AMP formation in that culture, i.e., noradrenaline (acting via an alpha-adrenergic receptor), adenosine (acting via an A1 receptor), and somatostatin. It is concluded that the receptors for the ACTH/MSH peptides and the inhibitory hormones are located on the same cells, presumably the astroblasts. The maximal response to ACTH and alpha- and beta-MSH depends strongly on the age of culture. The results are discussed in view of the facts that (1) peptides of the ACTH/MSH family affect behavior and learning in animals, and (2) ACTH and alpha-MSH occur in brain.  相似文献   

3.
Basal and vasoactive intestinal peptide (VIP)-stimulated accumulations of cyclic AMP were measured in slices of rat cerebral cortex. Neither gamma-aminobutyric acid (GABA) nor the selective GABAB receptor agonist (-)-baclofen stimulated basal cyclic AMP accumulation, whereas VIP caused a large dose-dependent increase in cyclic AMP levels. However, in the presence of 100 microM (-)-baclofen, the effects of VIP on cyclic AMP accumulation were significantly enhanced, with the responses to 1 microM and 10 microM VIP being approximately doubled. The enhancing effects of (-)-baclofen was dose related (1-1,000 microM), but an enhancing effect was not observed with 100 microM (+)-baclofen. In the presence of the GABA uptake inhibitor nipecotic acid (1 mM), GABA caused a similar dose-related enhancement of the VIP response. The ability of either GABA or (-)-baclofen to augment VIP-stimulated production of cyclic AMP was not mimicked by the GABAA, agonists isoguvacine and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and was not antagonized by the GABAA antagonist bicuculline. The putative GABAB antagonist 5-aminovaleric acid (1 mM) significantly reduced the effect of (-)-baclofen. The ability of (-)-baclofen to enhance VIP-stimulated accumulation of cyclic AMP was observed in slices of rat cerebral cortex, hippocampus, and hypothalamus. These results indicate that GABA and (-)-baclofen can enhance VIP-stimulated accumulation of cyclic AMP in rat brain slices via an interaction with specific GABAB receptors.  相似文献   

4.
Vasoactive intestinal peptide (VIP) stimulated cyclic AMP production in rat peritoneal macrophages. The stimulatory effect of VIP was dependent on time, temperature and cell concentration, and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). At 15 degrees C, the response occurred in the 0.1-1000 nM range of VIP concentrations. Half maximal stimulation of cellular cyclic AMP (ED50) was obtained at 1.2 +/- 0.5 nM VIP, and maximal stimulation (about 3-fold basal level) was obtained between 100-1000 nM. The cyclic AMP system of rat peritoneal macrophages showed a high specificity for VIP. The order of potency observed in inducing cyclic AMP production was VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, pancreastatin and octapeptide of cholecystokinin did not modify cyclic AMP levels at concentrations as high as 1 microM. The beta-adrenergic agonist isoproterenol increased the cyclic AMP production and show additive effect with VIP. Somatostatin inhibits the accumulation of cyclic AMP in the presence of both vasoactive intestinal peptide and isoproterenol. The finding of a VIP-stimulated cyclic AMP system in rat peritoneal macrophages, together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, strongly suggest that VIP may be involved in the regulation of macrophage function.  相似文献   

5.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

6.
The ability of three analogs of ACTH1-24 ([Gln5, Phe9] ACTH1-24, [Gln5, Ala9[Acth1-24, and [Gln5, Lys8, Phe9[ ACTH1-24) embodying tryptophan substitutions to activate the adenylate cyclase system of a bovine adrenal plasma membrane preparation was compared to the effect of the analogs on adenosine 3':5'-monophosphate (cyclic AMP) accumulation and steroidogenesis in viable bovine adrenocortical cells. The results were not comparable. Whereas the analogs antagonized the ACTH1-24-activated membrane cyclase they stimulated cyclic AMP accumulation as well as steroid production of the cells. None of the analogs inhibited steroidogenesis of ACTH1-24-stimulated cells, but two of them, at very high dose levels, inhibited cyclic AMP production. The ability of the analogs to stimulate steroidogenesis of the adrenal cells half-maximally decreased in the order tryptophan greater than phenylalanine greater than alanine, indicating that the aromaticity of the indole ring of tryptophan is necessary for maximal interaction between hormone and receptor. Both the absolute and relative steroidogenic potencies were the same for several analogs when assayed with rat adrenal cells. Although only a small fraction of the cell's potential to produce cyclic AMP was necessary to induce maximum steroid production, the relative activities of a series of analogs were the same for steroidogenesis as for cyclic AMP accumulation. Furthermore, the concentration of cyclic AMP necessary for full steroidogenesis was practically identical for a series of peptides that differed widely in potency. These findings support the postulate that cyclic AMP accumulation and steroidogenesis in adrenocortical cells are coupled processes. The differential behavior of bovine adrenal plasma membranes and bovine adrenocortical cells toward ACTH analogs indicates that structure-function studies using cyclase assays may not reflect events that take place in the intact adrenal or in cell preparations derived therefrom.  相似文献   

7.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

8.
1. The effect of cyclic AMP (10 microM) on the incorporation of 32P into protein was studied in cell-free preparations of Schistocerca gregaria cerebral ganglia. 2. Cyclic AMP-dependent phosphorylation of total protein was maximal after 60 sec, had a pH optimum of 7 to 8, was not affected by temperature (22-37 degrees C) and had a Km of 77 microM ATP. 3. Cyclic AMP increased the phosphorylation of total and specific protein in soluble fractions greater than synaptosomal greater than microsomal greater than crude membrane fractions. 4. In a direct comparison of locust brain to rat cerebral cortex, cyclic AMP stimulated the increased phosphorylation of only three protein bands, whereas in identical fractions of locust brain the phosphorylation of at least 12 protein bands was observed.  相似文献   

9.
The ability of melanocyte stimulating hormone (MSH), adrenocorticotropic hormone (ACTH), and prostaglandin E1 (PGE1) to stimulate the accumulation of cyclic AMP was examined in intact mouse melanoma cells of varying metastatic potential. F1 cells (low metastatic potential) had significantly greater cyclic AMP levels in response to all three hormones than F5 (intermediate metastatic potential) and F10 (high metastatic potential) cells. The ranking of the response was as follows: MSH, F1 greater than F5 greater than F10, ACTH, F1 greater than F5 greater F10, PGE, F1 greater than F10 greater F5. In contrast to the above, the degree of hormonal stimulation of adenylate cyclase in broken cell preparations was virtually identical in all three melanoma cell lines. Control enzyme activity was depressed in both F5 and F10 relative to F1. The conflicting results between studies of intact vs. broken cell preparations could not be explained by increased cyclic AMP phosphodiesterase activity in F5 and F10 cells. We conclude that as the melanoma cells increase in metastatic potential, there is a significant loss in the ability of their cyclic AMP system to respond appropriately to hormonal stimuli.  相似文献   

10.
The potencies and intrinsic activities of adenosine analogs for stimulating cyclic AMP accumulation in slices of rat cerebral cortex were examined. 5'-N-Ethylcarboxamidoadenosine (NECA) caused the greatest increase in cyclic AMP accumulation (19.2-fold). 2-Chloroadenosine (2-CAD) induced a similar increase, but adenosine and six other analogs caused much smaller increases. All agonists tested had similar potencies in activating this response. Inhibition of adenosine uptake with 10 microM dipyridamole did not affect the maximal response to any agonist, although the potency of adenosine was increased approximately threefold. Each analog was also able to block partially the stimulation of cyclic AMP accumulation caused by NECA. Levels of cyclic AMP accumulation in the presence of NECA plus another analog were similar to those observed when the analog alone was present, as expected for partial agonists. Furthermore, the EC50 value for R-(-)-N6(2-phenylisopropyl)adenosine in increasing cyclic AMP accumulation was similar to the KI value for inhibiting the response to NECA. The EC50 value for adenosine was substantially higher than the KI value for inhibiting the response to NECA; however, in the presence of dipyridamole, the two values were more closely correlated. The response to NECA was blocked by 8-phenyltheophylline, 1,3-diethyl-8-phenylxanthine, and 8-p-sulfophenyltheophylline, with KI values from 1 to 10 microM. The results suggest that adenosine analogs stimulate cyclic AMP accumulation in cerebral cortex through low-affinity receptors, but that some analogs only partially activate these receptors. Adenosine itself may also be a partial agonist, or its actions may be obscured by simultaneous activation of another receptor.  相似文献   

11.
Functional vasoactive intestinal peptide (VIP) receptors have been characterized in rat peritoneal macrophages. The binding depended on time, temperature and pH, and was reversible, saturable and specific. Scatchard analysis of binding data suggested the presence of two classes of binding sites: a class with high affinity (kd = 1.1 +/- 0.1 nM) and low capacity (11.1 +/- 1.5 fmol/10(6) cells), and a class with low affinity (kd = 71.6 +/- 10.2 nM) and high capacity (419.0 +/- 80.0 fmol/10(6) cells). Structural requirements of these receptors were studied with peptides structurally or not structurally related to VIP. Several peptides inhibited 125I-VIP binding to rat peritoneal macrophages with the following order of potency: VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, somatostatin, pancreastatin and octapeptide of cholecystokinin (CCK 26-33) were ineffective. VIP induced an increase of cyclic AMP production. Half-maximal stimulation (ED50) was observed at 1.2 +/- 0.5 nM VIP, and maximal stimulation (3-fold above basal levels) was obtained between 0.1-1 microM. Properties of these binding sites strongly support the concept that VIP could behave as regulatory peptide on the macrophage function.  相似文献   

12.
Secretin Stimulates Cyclic AMP Formation in the Rat Brain   总被引:2,自引:0,他引:2  
The effects of secretin on cyclic AMP levels in the rat brain were determined. Incubation of rat brain frontal cortex slices with secretin or the structurally related peptides peptide histidine leucine (PHI) or vasoactive intestinal polypeptide (VIP) in the presence of 10 mM theophylline resulted in a dose-dependent increase in the cyclic AMP levels. The half-maximal increase in cyclic AMP occurred using a 1 microM dose of secretin or a 2 microM dose of PHI or VIP. Preincubation of slices with secretin-(5-27) produced a dose-dependent inhibition of the secretin but not VIP- or PHI-stimulated increase in the cyclic AMP content. Also, in receptor binding studies, secretin-(5-27) produced a dose-dependent inhibition (Ki = 400 nM) of 125I-secretin but not of 125I-VIP binding to rat brain membranes. Guanyl-5'-yl imidodiphosphate decreased the affinity of radiolabelled secretin binding as a result of an increased rate of dissociation of bound 125I-secretin. These data suggest that secretin receptors in the rat brain may be coupled to adenylate cyclase in a stimulatory manner and that secretin-(5-27) may function as a central secretin receptor antagonist.  相似文献   

13.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

14.
Porcine vasoactive intestinal peptide stimulated adenosine 3':5'-monophosphate (cyclic AMP) production in rat intestinal epithelial cells. The stimulation was dependent on time and temperature and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Under optimal conditions (at 15 degrees C, with 0.2 mM 3-isobutyl-1-methylaxanthine, at a cell concentration up to 18 microgram DNA/ml), the cyclic AMP production produced by vasoactive intestinal peptide was constant for 10 min and stopped after 15 min incubation, at either low (1 nM) or high (30 nM) concentration of the peptide. This plateau effect was demonstrated not to be due to an inactivation of vasoactive intestinal peptide in the medium nor to an alteration of receptors for the peptide. Cyclic AMP production was sensitive to a concentration as low as 0.1 nM vasoactive intestinal peptide. Maximal stimulation of cyclic AMP levels by vasoactive intestinal peptide was observed with 30 nM vasoactive intestinal peptide and represented an 11-fold increased above basal. The dorse-response curve was monophasic with a Km of 2.3 x 10(-9) M. No cooperative effects were detected by Hill analysis. The positive non-linear relationship observed between stimulation of cyclic AMP production and occupancy of binding site was not time-dependent as indicated by experiments performed after 15, 45 and 120 min incubation. Maximal and half-maximal responses were obtained at about 70% and 7% occupation of binding sites, respectively. Chicken vasoactive intestinal peptide and porcine secretin were agonists of porcine vasoactive intestinal peptide with a 6-times and a 120-times lower potency, respectively. Among secretin analogs that were found to have low affinity for vasoactive intestinal peptide binding sites, [4-alanine, 5-valine]secretin, that resembles vasoactive intestinal peptide at the first seven amino acids at the N-terminal end, was a partial agonist of vasoactive peptide at the first seven amino acids at the N-terminal end, was a partial agonist of vasoactive intestinal peptide and others failed to stimulate cyclic AMP production. Glucagon (10microM), gastric inhibitory peptide (0.1 microM), substance, P, neurotensin, octapeptide of cholecystokinin, bovine pancreatic polypeptide, human gastrin I with leucine at residue 15, Leu-enkephalinand somatostatin (1 microM) did not alter cyclicAMP levels. Non-peptide mediators such as dopamine, serotonin, acetylcholine and histamine, tested at 10 microM, were also ineffective. Prostaglandins E2, E1 and isoproterenol, tested at 10 microM, induced an increase of cyclic AMP levels above basal but were 9.5, 13.7 and 17.5 times less efficient than vasoactive intestinal peptide, respectively. Thus vasoactive intestinal peptide is a unique stimulus of cyclic AMP production in rat intestinal epithelial cells.  相似文献   

15.
C W Davis 《Life sciences》1985,37(1):85-94
Alterations in the cyclic AMP-dependent protein kinase activity ratio in response to putative neurotransmitters and other cyclic AMP-elevating agents in intact cerebral cortical slices and Krebs-Ringer particulate preparations from cerebral cortex were examined. Both norepinephrine (30 microM) and forskolin (20 microM) produced a time-dependent increase in intracellular levels of cyclic AMP in cerebral cortical slices which was paralleled by an increase in both cyclic AMP and the protein kinase activity ratio. The increases were maximal at 5 min. and remained elevated for at least 15 min. Forskolin, norepinephrine, adenosine and isoproterenol produced a concentration-dependent increase in both cyclic AMP and the protein kinase activity ratio, however, the degree of increase observed was dissimilar. Thus, a 5-fold change in intracellular cyclic AMP resulted in only a 2-fold increase in the activity ratio. Of the agents examined, forskolin produced the most marked change in the activity ratio (from 0.23 to 0.78 at 100 microM) while isoproterenol at 100 microM produced only a 50% increase in the activity ratio. The half-time for the decline in forskolin elicited elevations of either the activity ratio or cyclic AMP was about 4-6 min. In the presence of the phosphodiesterase inhibitor, Ro 20-1724, both were significantly prolonged being 60-70% of the maximum observed immediately after forskolin stimulation, at 15 min. Potentiation of forskolin elicited increases in the activity ratio by Ro 20-1724 were also observed but the increase in the activity ratio was maximal at 7.5 min. while cyclic AMP accumulations continued to rise during the entire 15 min. incubation. Particulate preparations from cerebral cortex were found to contain a cyclic AMP-dependent protein kinase which could be activated 2 to 3-fold with either forskolin, norepinephrine, or adenosine. Unlike the intact brain slice the changes in protein kinase activity ratio and intracellular levels of cyclic AMP in cell-free particulate preparations were similar in both time and degree.  相似文献   

16.
The effects of VIP on cyclic AMP and glycogen levels in vertebrate retina   总被引:3,自引:0,他引:3  
The effects of VIP and related-peptides (PHI, secretin, glucagon) on cyclic AMP formation were investigated in intact pieces of rabbit retina. VIP and PHI increased cyclic AMP levels with EC50 of 160 nM and 300 nM respectively. At 5 microM the peptides increased cyclic AMP 46 fold (VIP) and 38 fold (PHI). Secretin was much less potent and glucagon was totally inactive. VIP was also tested for its effects on glycogen levels under similar experimental conditions. In contrast to its pronounced glycogenolytic action in mouse cerebral cortical slices, VIP at 1 microM decreased only moderately (38.3%) 3H-glycogen newly synthesized from 3H-glucose by pieces of rabbit retina. Furthermore a discrepancy between the efficacy of VIP in increasing cyclic AMP and in promoting glycogenolysis appears to exist. A similar dissociation between these two cellular events was also observed with other neuroactive substances. Thus the pronounced increase in cyclic AMP induced by dopamine and forskolin was accompanied by only a moderate decrease in 3H-glycogen levels. Conversely 50 mM potassium induced a 79.9% decrease in 3H-glycogen levels without any significant increase in cyclic AMP.  相似文献   

17.
G J Law  K P Ray  M Wallis 《FEBS letters》1984,166(1):189-193
A synthetic form of human pancreatic growth hormone releasing factor (GRF-44-NH2) was shown to be a potent stimulator of growth hormone (GH) secretion and cellular cyclic AMP levels in cultured sheep pituitary cells. A small dose-dependent stimulation of prolactin secretion was also observed. Somatostatin (0.5 microM) completely blocked the maximal GRF (1 nM)-stimulated secretion without a significant effect on cyclic AMP levels. Dopamine (0.1 microM) inhibited the GRF-elevated GH secretion by 50% and lowered cyclic AMP levels by 30%. Dopamine (0.1 microM) inhibition of basal prolactin secretion was not affected by GRF (1 nM). The data support the hypothesis that cyclic AMP is involved in the action of GRF but suggest that somatostatin can inhibit GRF-induced secretion of GH independently of cyclic AMP.  相似文献   

18.
Binding sites for melanin-concentrating hormone (MCH) in human brain were investigated and characterized by radioligand binding. Specific binding sites for MCH were present in every region of human brain (cerebral cortex, cerebellum, thalamus, hypothalamus, pons, and medulla oblongata) obtained at autopsy. alpha-Melanocyte stimulating hormone or ACTH was a poor inhibitor of (125)I-MCH binding (IC(50) 1 microM) compared with MCH (IC(50) = 0.3 +/- 0.07 nM, mean +/- SEM, n = 3). Scatchard plots of (125)I-MCH binding in human brain (thalamus) gave a dissociation constant of 0.2 +/- 0.06 nM and maximal binding of 5.8 +/- 0.3 fmol/mg protein (n = 3). These findings suggest that specific MCH binding sites that differ from the melanocortin receptors exist in human brain.  相似文献   

19.
The effects of vasoactive intestinal peptide (VIP) and several other peptides have been examined on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost (carp) retina. VIP was the most effective peptide examined, inducing a dose-related response, and an approximately fivefold increase in cyclic AMP production when used at a concentration of 10 microM. Porcine histidine isoleucine-containing peptide and secretin, peptides structurally related to VIP, also stimulated cyclic AMP accumulation, but at concentrations of 10 microM induced responses which were only approximately 40% and 10%, respectively, of the response observed with 10 microM VIP. In contrast, several other peptides, including glucagon, neurotensin, somatostatin, luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone, cholecystokinin octapeptide26-33, gastrin-releasing peptide, thyrotropin-releasing hormone, and VIP10-28 were totally inactive. The response to 10 microM VIP was not antagonized by several dopamine antagonists, indicating the presence of a population of specific VIP receptors coupled to adenylate cyclase, distinct from the population of dopamine receptors coupled to adenylate cyclase also known to be present in this tissue. Finally, experiments involving the use of fractions of isolated horizontal cells indicate that these neurons possess a population of VIP receptors coupled to cyclic AMP production which would appear to share a common pool of adenylate cyclase with a population of similarly coupled dopamine receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号