首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Genetic Basis of Sex Ratio in Silene Alba (= S. Latifolia)   总被引:2,自引:1,他引:1       下载免费PDF全文
D. R. Taylor 《Genetics》1994,136(2):641-651
A survey of maternal families collected from natural populations showed that the sex ratio in Silene alba was slightly female biased. Sex ratio varied among populations and among families within a female biased population. Crosses among plants from the most female biased population and the most male biased population showed that the sex ratio polymorphism was inherited through or expressed in the male parent. Males from one family in particular exhibited a severe female bias, characterized by less than 20% male progeny. The inheritance of sex ratio was investigated using a reciprocal crossing design. Sex ratios from reciprocal crosses were significantly different, indicating either sex-linkage or cytoplasmic inheritance of sex ratio. The sex ratios produced by males generally resembled the sex ratios produced by their male parents, indicating that the sex ratio modifier was Y linked. The maternal parent also significantly influenced sex ratio through an interaction with the genotype of the paternal parent. Sex ratio, therefore, is apparently controlled by several loci. Although sex ratio bias in this species may be due to deleterious alleles on the Y chromosome, it is more likely to involve an interaction between loci that cause the female bias and a Y-linked locus that enhances the proportion of males in the progeny.  相似文献   

2.
Male and female flowering plants of the dioecious Urtica dioica occur in approximately equal numbers in our study area on the coastal sand dunes of Meijendel. The seed sex ratio (SSR, fraction of males) collected from female plants in the field varied between 0.05 and 0.76, and differed significantly between maternal parents. After one generation of selection for either high or low SSR, female plants produced seed batches with sex ratios as extreme as 0.08 and 0.73. Natural populations of U. dioica harbour considerable genetic variation in SSR.  相似文献   

3.
The life cycles of mosses and other bryophytes are unique among land plants in that the haploid gametophyte stage is free-living and the diploid sporophyte stage is ephemeral and completes its development attached to the maternal gametophyte. Despite predictions that populations of haploids might contain low levels of genetic variation, moss populations are characterized by substantial variation at isozyme loci. The extent to which this is indicative of ecologically important life history variation is, however, largely unknown. Gametophyte plants from two populations of the moss Ceratodon purpureus were grown from single-spore isolates in order to assess variation in growth rates, biomass accumulation, and reproductive output. The data were analyzed using a nested analysis of variance, with haploid sib families (gametophytes derived from the same sporophyte) nested within populations. High levels of life history variation were observed within both populations, and the populations differed significantly in both growth and reproductive characteristics. Overall gametophytic sex ratios did not depart significantly from 1:1 within either population, but there was significant variation among families in both populations for progeny sex ratio. Some families produced predominantly male gametophytes, while others yielded predominantly females. Because C. purpureus has a chromosomal mechanism of sex determination, these observations suggest differential (but unpredictable) germination of male and female spores. Life history observations showed that male and female gametophytes are dimorphic in size, maturation rates, and reproductive output.  相似文献   

4.
In many gynodioecous species, females produce more viable seeds than hermaphrodites. Knowledge of the relative contribution of inbreeding depression in hermaphrodites and maternal sex effects to the female fertility advantage and the genetic basis of variation in female fertility advantage is central to our understanding of the evolution of gender specialization. In this study we examine the relative contribution of inbreeding and maternal sex to the female fertility advantage in gynodioecious Thymus vulgaris and quantify whether there is genetically based variation in female fertility advantage for plants from four populations. Following controlled self and outcross (sib, within-population, and between-population) pollination, females had a more than twofold fertility advantage (based on the number of germinating seeds per fruit), regardless of the population of origin and the type of pollination. Inbreeding depression on viable seed production by hermaphrodites occurred in two populations, where inbreeding had been previously detected. Biparental inbreeding depression on viable seed production occurred in three of four populations for females, but in only one population for hermaphrodites. Whereas the maternal sex effect may consistently enhance female fertility advantage, inbreeding effects may be limited to particular population contexts where inbreeding may occur. A significant family x maternal sex interaction effect on viable seed production was observed, illustrating that the extent of female fertility advantage varies significantly among families. This result is due to greater variation in hermaphrodite (relative to female) seed fertility between families. Despite this genetic variation in female fertility advantage and the highly female biased sex ratios in populations of T. vulgaris, gynodioecy is a stable polymorphism, suggesting that strong genetic and/or ecological constraints influence the stability of this polymorphism.  相似文献   

5.
Byers DL  Warsaw A  Meagher TR 《Heredity》2005,95(1):69-75
Habitat fragmentation of prairie ecosystems has resulted in increased isolation and decreased size of plant populations. In large populations, frequency-dependent selection is expected to maintain genetic diversity of sex determining factors associated with gynodioecy, that is, nuclear restorer genes that reverse cytoplasmic male sterility (nucleocytoplasmic gynodioecy). However, genetic drift will have a greater influence on small isolated populations that result from habitat fragmentation. The genetic model for nucleocytoplasmic gynodioecy implies that the proportion of female progeny produced by hermaphroditic and female plants will show more extreme differences in populations with reduced allelic diversity, and that restoration of male function will increase with inbreeding. We investigated potential impacts of effects resulting from reduced population sizes by comparison of progeny sex ratios produced by female and hermaphroditic plants in small and large populations of the gynodioecious prairie species, Lobelia spicata. A four-way contingency analysis of the impact of population size, population sex ratio, and maternal gender on progeny sex ratios showed that progeny sex ratios of hermaphroditic plants were strongly influenced by population size, whereas progeny sex ratios of female plants were strongly influenced by population sex ratio. Further, analysis of variation in progeny-type distribution indicated decreased restoration and increased loss of male function in smaller and isolated populations. These results are consistent with reduced allelic diversity or low allelic frequency at restorer loci in small and isolated populations. The consequent decrease in male function has the potential to impede seed production in these fragmented prairies.  相似文献   

6.
Most sex ratios reported for Silene latifolia are female biased. As a result of experiments performed by Correns in the early 1900s, pollen tube competition has generally been accepted as the primary cause of these skewed ratios. We did four sets of hand pollinations in which we varied the size of pollen loads and placement of pollen along the filamentous stigma. The effect of pollen load size on progeny sex ratios was not statistically significant. Of 32 maternal families, 17 contained more females than males (one ratio deviated statistically from 1:1), and 13 contained more males than females. Paternal families exhibited a greater range of sex ratios, including three with a significant female bias and one with a significant male bias. Within experiments, neither the maternal parent nor where pollen was placed had a statistically significant effect on progeny sex ratios; the paternal effect was significant in one experiment. We suggest that sex ratios in Silene latifolia are not necessarily affected by the level of pollen competition. Other factors, including variation among males and sex-linked mortality, may help explain the skewed sex ratios that characterize populations of this species. Further, Correns' observations of excess females may have resulted from his use of interspecific hybrids.  相似文献   

7.
Dioecious plant species commonly exhibit deviations from the equilibrium expectation of 1:1 sex ratio, but the mechanisms governing this variation are poorly understood. Here, we use comparative analyses of 243 species, representing 123 genera and 61 families to investigate ecological and genetic correlates of variation in the operational (flowering) sex ratio. After controlling for phylogenetic nonindependence, we examined the influence of growth form, clonality, fleshy fruits, pollen and seed dispersal vector, and the possession of sex chromosomes on sex‐ratio variation. Male‐biased flowering sex ratios were twice as common as female‐biased ratios. Male bias was associated with long‐lived growth forms (e.g., trees) and biotic seed dispersal and fleshy fruits, whereas female bias was associated with clonality, especially for herbaceous species, and abiotic pollen dispersal. Female bias occurred in species with sex chromosomes and there was some evidence for a greater degree of bias in those with heteromorphic sex chromosomes. Although the role of interactions among these correlates require further study, our results indicate that sex‐based differences in costs of reproduction, pollen and seed dispersal mechanisms and sex chromosomes can each play important roles in affecting flowering sex ratios in dioecious plants.  相似文献   

8.
Patterns of sex expression and sex ratios are key features of the life histories of organisms. Bryophytes are the only haploid‐dominant land plants. In contrast with seed plants, more than half of bryophyte species are dioecious, with rare sexual expression and sporophyte formation and a commonly female‐biased sex ratio. We asked whether variation in sex expression, sex ratio and sporophyte frequency in ten dioecious pleurocarpous wetland mosses of two different families was best explained by assuming that character states evolved: (1) in ancestors within the respective families or (2) at the species level as a response to recent habitat conditions. Lasso regression shrinkage identified relationships between family membership and sex ratio and sporophyte frequency, whereas environmental conditions were not correlated with any investigated reproductive trait. Sex ratio and sporophyte frequency were correlated with each other. Our results suggest that ancestry is more important than the current environment in explaining reproductive patterns at and above the species level in the studied wetland mosses, and that mechanisms controlling sex ratio and sporophyte frequency are phylogenetically conserved. Obviously, ancestry should be considered in the study of reproductive character state variation in plants. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 163–172.  相似文献   

9.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

10.
Determining the mechanisms governing sex-ratio variation in dioecious organisms represents a central problem in evolutionary biology. It has been proposed that in plants with sex chromosomes competition between pollen tubes of female- versus male-determining microgametophytes (certation) causes female-biased primary sex ratios. Experimental support for this hypothesis is limited and recent workers have cast doubt on whether pollen-tube competition can modify sex ratios in dioecious plants. Here we investigate the influence of variation in pollination intensity on sex ratios in Rumex nivalis, a wind-pollinated alpine herb with strongly female-biased sex ratios. In a garden experiment, we experimentally manipulated pollination intensity using three concentric rings of female recipient plants at different distances from a central group of male pollen donors. This design enabled us to test the hypothesis that increasing pollen load size, by intensifying gametophyte competition, promotes female-biased sex ratios in R. nivalis. We detected a significant decline in pollen load at successive distance classes with concomitant reductions in seed set. Sex ratios of progeny were always female biased, but plants at the closest distance to male donors exhibited significantly greater female bias than more distant plants. The amount of female bias was positively correlated with the seed set of inflorescences. Hand pollination of stigmas resulted in approximately 100-fold higher stigmatic pollen loads than wind-pollinated stigmas and produced exceptionally female-biased progenies (female frequency = 0.96). Our results are the first to demonstrate a functional relation between stigmatic pollen capture, seed set, and sex ratio and suggest that certation can contribute towards female-biased sex ratios in dioecious plants.  相似文献   

11.
Sex allocation theory predicts parents should adjust their investment in male and female offspring in a way that increases parental fitness. This has been shown in several species and selective contexts. Yet, seasonal sex ratio variation within species and its underlying causes are poorly understood. Here, we study sex allocation variation in the wood ant Formica pratensis. This species displays conflict over colony sex ratio as workers and queens prefer different investment in male and female offspring, owing to haplodiploidy and relatedness asymmetries. It is unique among Formica ants because it produces two separate sexual offspring cohorts per season. We predict sex ratios to be closer to queen optimum in the early cohort but more female‐biased and closer to worker optimum in the later one. This is because the power of workers to manipulate colony sex ratio varies seasonally with the availability of diploid eggs. Consistently, more female‐biased sex ratios in the later offspring cohort over a three‐year sampling period from 93 colonies clearly support our prediction. The resulting seasonal alternation of sex ratios between queen and worker optima is a novel demonstration how understanding constraints of sex ratio adjustment increases our ability to predict sex ratio variation.  相似文献   

12.
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids. Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony. Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.  相似文献   

13.
Urtica dioica is a sub-dioecious plant species, i.e. males and females coexist with monoecious individuals. Under standard conditions, seed sex ratio (SSR, fraction of males) was found to vary significantly among seed samples collected from female plants originating from the same population (0.05–0.76). As a first step, we investigated the extent to which SSR and sex expression of male, female, and monoecious individuals is influenced by external factors. We performed experiments to analyse: (1) whether the environment of a parental plant affects the sex ratio (SR) of its offspring, (2) whether SSR can be affected by environmental conditions before flowering, and (3) whether sex expression of male, female and monoecious plants that have already flowered can be modified by environmental conditions or by application of phyto-hormones. Within the range of our experimental design, SSR was not influenced by external factors, and gender in male and female plants was stable. However, sex expression in monoecious plants was found to be labile: flower sex ratio (FSR, fraction of male flowers) differed considerably between clones from the same individual within treatments, and increased toward 100% maleness under benign conditions. These results provide strong evidence that monoecious individuals are inconstant males, which alter FSR according to environmental circumstances. In contrast, we consider sex expression in male and female individuals to be solely genetically based. The observed variation in SSR between maternal parents cannot be explained by sex-by-environment interactions.  相似文献   

14.
Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality differentially affects sex‐specific reproductive success. Condition‐dependent, or facultative, sex ratio strategies like these allow multiple sex ratios to coexist within a population. They also create complex population structure due to the presence of multiple maternal conditions. As a result, modeling facultative sex ratio evolution requires not only sex ratio strategies with multiple components, but also two‐sex population models with explicit stage structure. To this end, we combine nonlinear, frequency‐dependent matrix models and multidimensional adaptive dynamics to create a new framework for studying sex ratio evolution. We illustrate the applications of this framework with two case studies where the sex ratios depend one of two possible maternal conditions (age or quality). In these cases, we identify evolutionarily singular sex ratio strategies, find instances where one maternal condition produces exclusively male or female offspring, and show that sex ratio biases depend on the relative reproductive value ratios for each sex.  相似文献   

15.
The sex of 746 great reed warbler fledglings (from 175 broods) was determined by the use of single primer polymerase chain reaction. The reliability of the technique was confirmed as 104 of the fledglings were subsequently recorded as adults of known sex. The overall sex ratio did not differ from unity. Variation in sex ratios between broods was larger than expected from a binomial distribution. Female identity explained some of the variation of brood sex ratio indicating that certain females consistently produced sex ratios that departed from the average value in the population. The theory of sex allocation predicts that parents should adjust the sex ratio of their brood to the relative value of sons and daughters and this may vary in relation to the quality of the parents or to the time of breeding. In the great reed warbler, the proportion of sons was not related to time of breeding, or to any of five female variables. Of five male variables, males with early arrival date tended to produce more daughters. The sex ratio of fledglings that were a result of extra-pair fertilizations did not differ from that of legitimate fledglings. Hence, there is currently no evidence of that female great reed warblers invest in a higher proportion of sons when mated with attractive males.  相似文献   

16.
Models for sex allocation assume that increased expenditure of resources on male function decreases the resources available for female function. Under some circumstances, a negative genetic correlation between investment in stamens and investment in ovules or seeds is expected. Moreover, if fitness returns for investment in male and female function are different with respect to size, sex allocation theory predicts size‐specific gender changes. We studied sex allocation and genetic variation for investment in stamens, ovules and seeds at both the flower and the plant level in a Dutch population of the wind‐pollinated and predominantly outcrossing Plantago coronopus. Data on biomass of floral structures, stamens, ovules, seedset and seedweight were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and (genetic) correlations were estimated from the greenhouse‐grown progeny of maternal families, raised at two nutrient levels. The proportion of reproductive biomass invested in male function was high at flowering (0.86 at both nutrient levels) and much lower at fruiting (0.30 and 0.40 for the high and low nutrient treatment, respectively). Androecium and gynoecium mass exhibited moderately high levels of genetic variance, with broad‐sense heritabilities varying from 0.35 to 0.56. For seedweight no genetic variation was detected. Significant among‐family variation was also detected for the proportion of resources invested in male function at flowering, but not at fruiting. Phenotypic and broad‐sense genetic correlations between androecium and gynoecium mass were positive. Even after adjusting for plant size, as a measure of resource acquisition, maternal families that invested more biomass in the androecium also invested more in the gynoecium. This is consistent with the hypothesis that genetic variation for resource acquisition may in part be responsible for the overall lack of a negative correlation between male and female function. Larger plants had a more female‐biased allocation pattern, brought about by an increase in seedset and seedweight, whereas stamen biomass did not differ between small and large plants. These results are discussed in relation to size‐dependent sex allocation theory (SDS). Our results indicate that the studied population harboured substantial genetic variation for reproductive characters.  相似文献   

17.
Trivers and Willard predicted that when parental condition has differential effects on the fitness of male and female offspring, parents who are in good condition will bias investment toward the sex that benefits most from additional investment. Efforts to test predictions derived from Trivers and Willard''s model have had mixed results, perhaps because most studies have relied on proxy measures of parental condition, such as dominance rank. Here, we examine the effects of female baboons condition on birth sex ratios and post-natal investment, based on visual assessments of maternal body condition. We find that local environmental conditions have significant effects on female condition, but maternal condition at conception has no consistent relationship with birth sex ratios. Mothers who are in poorer condition at the time of conception resume cycling significantly later than females who are in better condition, but the sex of their infants has no effect on the time to resumption of cycling. Thus, our findings provide strong evidence that maternal condition influences females'' ability to reproduce, but females do not facultatively adjust the sex ratio of their offspring in relation to their dominance rank or current condition.  相似文献   

18.
In this study, sex ratios at birth (male/female births) were found to vary according to family composition. Using Demographic and Health Survey (DHS) maternity histories from sub-Saharan Africa, the study shows that the sex ratio at birth increases with the number of previous male births and decreases with the number of previous female births. For families with only males, the sex ratio increases from 1.046 for the first birth to 1.083 for the 8th birth. For families with only females, the sex ratio decreases from 1.046 for the first birth to 0.942 for the 8th birth. The differences were highly significant when tested with a linear logistic model (p=0.018 for males; p=1.85 x 10(-11) for females). The effect was not symmetrical, and was found to be significantly stronger for females. These effects could be reproduced assuming a strong heterogeneity between couples. The distribution of sex ratios was fitted with an asymmetrical log-gamma function, which revealed a wide range of variation in the sex ratio between 0.50 and 1.30, and a peak around 1.14. The results and their implications are discussed in the light of former findings in France and in the United States of America.  相似文献   

19.
Summary Sex ratios of a population and of litters were sampled in muskrats in Ontario, Canada. Sex ratios of litters sampled from nests were male biased (54% male). Until weaning, no differential costs of producing and rearing male and female young were identified that could account for this greater production of males. Following weaning, however, male-biased dispersal of juveniles from their natal site and more frequent acquisition by females of these sites as breeding sites the following year suggested a greater investment by adult females in female young. Therefore, competition between female siblings for the acquisition of their natal site may be sufficient to result in the greater production of males. In addition, the simultaneous occupation of, and competition between, siblings and parents for the resources of the natal home range may not be necessary for local resource competition to result in a greater production of the dispersing sex. Greater-than-expected binomial variance in sex ratios of litters suggested that adjustment of sex-ratios occurred. However, we were unable to associate the adjustment of litter sex ratios with changes in maternal condition. The greater production of males and the predominance of monogamous associations between adults in this population may have lead to slightly greater variation in male fitness than female fitness. Therefore, a female in better-than-average condition may have benefited by producing more males. Similarly, a lower cost of producing dispersing males may allow nutritionally-stressed females to reduce their total expenditure on offspring by producing more males. Because these experiments were non-manipulative, maternal condition may not have varied sufficiently during this study to detect adjustments of litter sex ratios resulting from either of the above mechanisms acting separately, but the combined effects of small differences in matermal condition and selective pressures operating in the same direction may have resulted in the observed deviation from the binomial.  相似文献   

20.
Frequency‐dependent selection is a fundamental principle of adaptive sex ratio evolution in all sex ratio theories but has rarely been detected in the wild. Through long‐term censuses, we confirmed large fluctuations in the population sex ratio of the aphid Prociphilus oriens and detected frequency‐dependent selection acting on these fluctuations. Fluctuations in the population sex ratio were partly attributable to climatic factors during the growing season. Climatic factors likely affected the growth conditions of host plants, which in turn led to yearly fluctuations in maternal conditions and sex ratios. In the process of frequency‐dependent selection, female proportion higher or lower than ca. 60% was associated with a reduction or increase in female proportion, respectively, the next year. The rearing of aphid clones in the laboratory indicated that mothers of each clone produced an increasing number of females as maternal size increased. However, the mean male number was not related to maternal size, but varied largely among clones. Given genetic variance in the ability to produce males among clones, selection should favour clones that can produce more numerous males in years with a high female proportion. Population‐level sex allocation to females was on average 71%–73% for three localities and more female‐biased when maternal conditions were better. This tendency was accounted for by the hypothesis of competition among foundresses rather than the hypothesis of local mate competition. We conclude that despite consistent operation of frequency‐dependent selection, the sex ratio continues to fluctuate because environmental conditions always push it away from equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号