首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
rNM23-H1/NDPK-A中试纯化工艺研究   总被引:4,自引:1,他引:4  
为比较3种DEAE填料对rNM23-H1/NDPK-A的纯化效果,利用同一批中试发酵样品在相同的条件下进行离子交换层析,分别收集P0.2和P1.0两个洗脱峰。通过对洗脱峰中蛋白质含量、目标蛋白相对含量以及酶比活的测定,计算得出Matrex Cellufine A-200,DEAE Sephadex A-25,Macro-Prep DEAE Support三种填料相对应的NDPK-A得率及纯化倍数分别为74.5%、40.8%、92.6%、2.4、1.9、3.1倍。综合分析表明Macro-Prep DEAE Support填料对rNM23-H1/NDPK-A的纯化效果最好。  相似文献   

2.
Affinity chromatography using sulfated, spherical cellulose beads (Cellufine Sulfate) was assessed for purification of influenza A and influenza B viruses. Recovery rates of viruses eluted from the beads were high for all tested virus strains. This method was also useful for removing chicken egg-derived impurities from allantoic fluids containing influenza viruses; the hemagglutination activity per amount of protein in the eluted sample was significantly higher than that in the applied sample. These results suggest that use of Cellufine Sulfate is a practical method for primary purification of influenza viruses in the process of influenza vaccine production.  相似文献   

3.
Three soluble enzyme fractions (F-I, F-II, and F-III) that hydrolyze phophoinositides were separated from soybean sprouts by using Matrex green gel column chromatography. Among the three phosphatidylinositol (PI)-specific phopholipsase C (PLC) enzymes, only the third fraction (F-III) was able to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) as well as phosphatidylinositol (PI) and phosphatidylinositol phosphate (PIP) as substrates. The F-I and F-II fractions only showed enzymatic activities for PI and PIP. The PIP2-hydrolyzing PLC protein, F-III, was partially purified using the chromatographic steps of the Matrex green gel, phenyl Toyopearl, Matrex orange gel, Mono S cation exchange, and superose 6 gel filtration columns. The molecular weight of the F-III protein was estimated to be about 64 kDa on SDS-PAGE. The protein showed immunocross-reactivity with a polyclonal antibody that was prepared against the X and Y motifs of animal PLC enzymes, the conserved catalytic domains. Ca2+ ion critically affected the PIP2-hydrolyzing PLC activity of the F-III protein, representing maximal activity at 10 microM Ca2+ concentration. The PIP2-hydrolyzing PLC activity of the protein was also significantly increased by sodium deoxycholate (SDC) from 0.05 to 0.08%. However, the activity was greatly reduced above the concentration, and no activity was detected at 0.3% SDC. In addition, the protein exhibited maximal PIP2-hydrolyzing PLC activity at pH, in the range of 6.5-7.5.  相似文献   

4.
To investigate receptor-mediated Moloney murine leukemia virus (MoMuLV) entry, the green fluorescent protein (GFP)-tagged ecotropic receptor designated murine cationic amino acid transporter (MCAT-1) (MCAT-1-GFP) was constructed and expressed in 293 cells (293/MCAT-1-GFP). 293/MCAT-1-GFP cells displayed green fluorescence primarily at the cell membrane and supported wild-type levels of MoMuLV vector binding and transduction. Using immunofluorescence labeling and confocal microscopy, it was demonstrated that the surface envelope protein (SU) gp70 of MoMuLV virions began to appear inside cells 5 min after virus binding and was colocalized with MCAT-1-GFP. However, clathrin was not colocalized with MCAT-1-GFP, suggesting that MoMuLV entry, mediated by MCAT-1, does not involve clathrin. Double immunofluorescence labeling of SU and clathrin in 293 cells expressing untagged receptor (293/MCAT-1) gave the same results, i.e., SU and clathrin did not colocalize. In addition, we examined the transduction ability of MoMuLV vector on HeLa cells overexpressing the dominant-negative GTPase mutant of dynamin (K44A). HeLa cells overexpressing mutant dynamin have a severe block in endocytosis by the clathrin-coated-pit pathway. No significant titer difference was observed when MoMuLV vector was tranduced into HeLa cells overexpressing either wild-type or mutant dynamin, while the transduction ability of vesicular stomatitis virus glycoprotein pseudotyped vector into HeLa cells overexpressing mutant dynamin was decreased significantly. Taken together, these data suggest that MoMuLV entry does not occur through the clathrin-coated-pit-mediated endocytic pathway.  相似文献   

5.
Selective desorption on ceramic hydroxyapatite (CHT) was implemented for the purification of monomeric monoclonal antibody (mAb) from associated aggregates and other post-protein A step impurities. A robotic liquid handling system was employed to carry out a parallel batch screen of selective desorbents on a post-protein A step mAb mixture. The effect of different phosphate concentrations was also investigated. Selective batch separations were achieved between monomeric mAb and associated aggregates/impurities. The batch screen results also established optimal mobile phase conditions for each selective desorbent. These initial batch results were then used to guide column separations, and baseline separation of monomeric mAb from associated aggregates and impurities was achieved, validating the screening results. Selective desorption also resulted in improved separations on CHT, with 100% yield of pure monomeric mAb as compared to 61% and 79%, respectively, for conventional linear and step gradient operations. This proof of concept study demonstrates selective desorption on CHT as an effective separation technique for the purification of monomeric mAb from associated aggregates and other post-protein A step impurities in a single process step.  相似文献   

6.
An efficient production method of heme-iron-enriched peptide was developed based on enzymatic hydrolysis. Hemoglobin hydrolysis, carried out stepwise with commercially available exopeptidase and endopeptidase, resulted in an increased degree of hydrolysis (DH). Exopeptidase-catalyzed protein hydrolysis formed low molecular weight peptides and amino acids. Different process parameters including dialysis and ultra- and diafiltration were evaluated. Heme/peptide ratio increased as molecular weight cut-off (MWCO) of the dialysis membrane increased. When the hydrolysate was dialyzed against sodium phosphate buffer, a higher heme/ peptide ratio was obtained. The heme/peptide ratio of the hydrolysate reached up to 25.4% when the dialysis was carried out with a membrane of 12-14 kDa MWCO. Also, the ratio was improved by the use of ultrafiltration and diafiltration on the pilot-scale.  相似文献   

7.
Baculovirus has emerged as a novel gene delivery and vaccine vector, and the demand for purified baculovirus is rising due to the increasing in vivo applications. Since the baculoviral envelope protein gp64 is a glycoprotein, we aimed to develop a concanavalin A (Con A) chromatography process, which harnessed the possible affinity interaction between gp64 and Con A, for simple and effective baculovirus purification. Throughout the purification process the virus stability and recovery were assessed by quantifying the virus transducing titers [TT, defined as transducing units (TU) per milliliter] and viral particles (VP). We found that baculovirus stability was sensitive to buffer conditions and diafiltration with a tangential flow filtration system LabScale using 300 K membranes yielded recoveries of ≈75% in TT and 82% in VP. The diafiltered baculovirus strongly bound to the Con A column as evidenced by the low virus losses to the flow through and wash fractions. The wash steps eliminated >99% of protein impurities and elution with 0.6 M α‐D ‐methylmannoside at room temperature led to the recoveries of ≈16% in VP and ≈15.3% in TU. The resultant VP/TU ratio was as low as 41.4, attesting the high quality of the purified virus. Further elution with 1 M α‐D ‐methylmannoside recovered another 6% virus TU, yielding a cumulative recovery of ≈21.3% in TU. These data demonstrated for the first time that Con A chromatography is suitable for baculovirus purification, and may be used for the purification of other viruses with surface glycoproteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
A simple, efficient two-step procedure of DEAE--Sephadex A--50 column chromatography followed by hydroxyapatite column chromatography for purification of alpha- and beta-tubulin subunits from newborn mouse brain is described. Stored frozen mouse brains can be used as a convenient starting material. Differential elution of alpha and beta subunits from hydroxyapatite was achieved using a linear gradient of 0.2--0.3 M phosphate buffer containing 2 M urea, 0.1% sodium dodecyl sulphate and 1 mM dithiothreitol. 20 mg of alpha-tubulin (purity: greater than 85%) and 16 mg of beta-tubulin (purity greater than 95%) completely separated from each other can be obtained in one experiment.  相似文献   

9.
High-performance liquid chromatography using spherical aggregates of strontium-phosphate hydroxyapatite(SrHA) micro-crystals as adsorbent has been developed; preliminary performance tests were carried out by using several types of protein. It can be deduced that, in parallel with the case of usual calcium-phosphate hydroxyapatite(CaHA), with SrHA also, two types of effective surface, vector a (or vector b) and vector c surfaces, appear on the crystal: the same protein molecular generally shows slightly different chromatographic behaviors between the CaHA and the SrHA packed column. Combining the SrHA and the CaHA packed column would lead to an efficient fractionation of a particular molecule from an assembly of molecules with subtle structural differences from one another.  相似文献   

10.
The aim of this work was to test a new matrix for group size exclusion chromatography, Matrex cellufine GH 25, and compare it with Sephadex G25 Superfine and Sephadex G25 fine. Matrex cellufine GH 25 showed a better behaviour at high flow rate (792 cm/h) without back-pressure or packing-down. Sephadex G25 superfine showed a limited flow rate (226 cm/h) with both back-pressure and packing-down and Sephades G25 fine allowed running at 792 cm/h but with packing-down fourfold superior to that of Matrex cellufine GH 25. To have the same number of theoretical plates, it was necessary to increase the height of the bed and therefore the volume of the matrix (43%). With Matrex cellufine GH 25, the sample volume was more limited (9% of column volume) than with Sephadex G25 superfine (17%) but was equivalent to Sephadex fine (9%). To have the same elution time as Sephadex G25 superfine, the flow rate had to be increased by a factor 1.7. As Matrex cellufine GH 25 allowed a high flow rate when the volume of the sample was limited to 6% of column volume, its performance is better than that of Sephadex G25.  相似文献   

11.
12.
Nanophased porous hydroxyapatite beads with particle diameters of 25 microm and 30 microm intended for use in protein and biomolecule separation are characterized with respect to chromatographic characteristics. These particles were produced from a hydroxyapatite gel by a controlled spray process yielding microspheres containing hydroxyapatite nanocrystals. By calcification of the microspheres, nanophased porous hydroxyapatite beads were obtained. As a reference material, ceramic hydroxyapatite Types I and II with a particle diameter of 40 microm was chosen. SEM pictures show that the surface of the nanophased hydroxyapatite is very rough compared to ceramic hydroxyapatite Types I and Type II. The calcium-to-phosphorous ratio of this nanophased hydroxyapatite is 1.6, which is slightly below the theoretical ratio of 1.67 of pure hydroxyapatite. The porosity is greater than 60%. An IgG binding capacity of 60.7 mg/ml for Bio-Rad Type I and 36.0 mg/ml for Type II, 42.0 mg/ml for the nanophased material with 25 microm and 19.7 mg/ml for the nanophased material with 30 microm were observed. The nanophased material with 30 microm had the lowest mass transfer resistancy as indicated by the dependency of the dynamic binding capacity on velocity. It is assumed that the mass transport properties are characterized by a low particle diffusion resistancy or by slight intraparticle convection. The material also showed high selectivity for IgG. When culture supernatant with 5% FCS containing 3 mg/ml was loaded, pure IgG could be eluted by linear gradient with increasing sodium phosphate concentration. This nanophased material comprises a novel stationary phase for IgG separation.  相似文献   

13.
The HPLC-type hydroxyapatite chromatography in the presence of sodium dodecyl sulfate (SDS) was assessed with special attention to the behavior of the surfactant. A significant amount of SDS was found to be adsorbed to the hydroxyapatite packed in the column from the starting buffer, 50 mM sodium phosphate buffer, pH 7.0, only when the buffer contained SDS in a concentration at or above its critical micelle concentration. When the phosphate buffer concentration was increased while the SDS concentration was kept at 1 mg/ml, the adsorbed surfactant was desorbed in advance of the release of proteins. Polypeptides derived from proteins could be successfully separated only when the column had been thoroughly equilibrated with the above-mentioned starting buffer solution. When a protein polypeptide complexed with SDS, which had been similarly equilibrated, was applied to the column, an amount of SDS corresponding to 75-90% (w/w) of the surfactant originally bound to the polypeptide was released upon its binding to the hydroxyapatite. On the other hand, porin, an Escherichia coli outer membrane protein, retaining its trimeric native structure in the presence of SDS, released a significantly smaller amount of SDS. When the membrane protein was denatured to give a single polypeptide, it behaved in a manner similar to that of the other protein polypeptides. The mechanism of binding of the protein polypeptides was discussed on the basis of these results. The native and denatured entities of porin could be efficiently separated as the result of the difference in their mode of interaction with the hydroxyapatite.  相似文献   

14.
Lipid enveloped retroviruses such as Moloney Murine Leukaemia Virus (MoMuLV) are commonly used gene therapy vectors. Downstream processing protocols used for their purification are time consuming and a potentially generic, single step capture method for the recovery of retroviral particles is proposed that exploits streptavidin-biotin affinity chromatography. The ability of four conventional adsorbent solid phases, Fractogel, Sepharose, Magnespheres and STREAMLINE immobilised with streptavidin, to capture and recover biotinylated Moloney Murine Leukaemia Virus was studied. MoMuLV can be biotinylated whilst retaining infectivity and the biotinylated virus can be adsorbed to Streptavidin Magnespheres yielding a 2298-fold increase in titre. For optimal virus biotinylation purification using Fractogel streptavidin can yield a 1896-fold increase in cfu/mg of protein and a 1191-fold decrease in DNA/cfu. Infectious virus can be recovered from Fractogel streptavidin with a maximum recovery of 16.7%.  相似文献   

15.
The bioprocessing industry relies on packed-bed column chromatography as its primary separation process to attain the required high product purities and fulfill the strict requirements from regulatory bodies. Conventional column packing methods rely on flow packing and/or mechanical compression. In this work, the application of ultrasound and mechanical vibration during packing was studied with respect to packing density and homogeneity. We investigated two widely used biochromatography media, incompressible ceramic hydroxyapatite, and compressible polymethacrylate-based particles, packed in a laboratory-scale column with an inner diameter of 50 mm. It was shown that ultrasonic irradiation led to reduced particle segregation during sedimentation of a homogenized slurry of polymethacrylate particles. However, the application of ultrasound did not lead to an improved microstructure of already packed columns due to the low volumetric energy input (~152 W/L) caused by high acoustic reflection losses. In contrast, the application of pneumatic mechanical vibration led to considerable improvements. Flow-decoupled axial linear vibration was most suitable at a volumetric force output of ~1,190 N/L. In the case of the ceramic hydroxyapatite particles, a 13% further decrease of the packing height was achieved and the reduced height equivalent to a theoretical plate (rHETP) was decreased by 44%. For the polymethacrylate particles, a 18% further packing consolidation was achieved and the rHETP was reduced by 25%. Hence, it was shown that applying mechanical vibration resulted in more efficiently packed columns. The application of vibration furthermore is potentially suitable for in situ elimination of flow channels near the column wall.  相似文献   

16.
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.  相似文献   

17.
Here we describe a two-step procedure for purification of human tenascin from conditioned medium of the SK-MEL-28 human melanoma cell line. The first step consists in passing the conditioned media through two chromatography columns connected in sequence. The first is a large capacity gelatin--Sepharose affinity chromatography column (to remove fibronectin), the second, over which the unbound material from the first column flows directly, is a hydroxyapatite chromatography column. Under these conditions, all tenascin present in the conditioned medium binds to the hydroxyapatite chromatography column from which it is then eluted by a 5-300 mM sodium phosphate gradient. With this step, we obtain a crude tenascin preparation, concentrated about 20 times with respect to the starting conditioned medium, and in which tenascin represents more than 50% of the total protein. The second step consists of two sequential precipitations with 6% and 12.8% poly(ethylene glycol). After this step, tenascin is more than 95% pure and does not show any contamination of chondroitin-sulfate-containing proteoglycans that are known to bind to it. From 21 medium we obtain about 3-4 mg tenascin which corresponds to a yield of about 40-50%. This procedure gives a higher yield, is simpler with respect to procedures previously described, avoids the exposure of the protein to denaturing agents or harsh conditions and could be used for purification of tenascin from the conditioned media of other cell lines. Thus, this procedure may represent a simple and useful tool for the preparation of tenascin to study its biological functions.  相似文献   

18.
The study aims on affinity matrix selection for a cell culture derived influenza virus capture step in downstream processing. Euonymus europaeus lectin (EEL) was used as an affinity ligand. Human influenza A/Puerto Rico/8/34 (H1N1) virus produced in MDCK cells was chosen as a model strain. The chromatographic separation characteristics of reinforced cellulose membranes and different matrices such as agarose, cellulose, polymer and glass particles with immobilized EEL have been determined. Results obtained were compared to affinity matrices, which are currently used in large-scale vaccine manufacturing. Mass balances for the viral membrane protein hemagglutinin showed that EEL affinity chromatography results in higher recoveries than conventional processes using Cellufine sulphate and heparinized agarose. The most efficient media, a polymer and a cellulose membrane, have been further characterized by protein and host cell DNA measurements. Separations based on the polymer matrix and the cellulose membrane removed contaminating DNA to 0.2 and 1%, respectively. Total protein contents were decreased to 50 and 31%, respectively. The EEL-membrane showed the highest influenza virus binding capacity. These characteristics demonstrate that EEL affinity chromatography is a promising candidate for capturing influenza viruses from MDCK cell culture broths in addition to currently applied chromatographic media.  相似文献   

19.
Confluent testicular peritubular cells derived from immature rats were used to study membrane associated proteoglycans (PG) Peripheral material (heparin releasable), membrane and intracellular material (Triton X-100 releasable) were collected, purified by anion exchange chromatography then characterized by gel filtration and by hydrophobic interaction chromatography, followed by enzymatic digestion and chemical treatment. The peripheral material was constituted of two populations of PG (Kav=0 and 0.10 on Superose 6 column), each containing both heparan sulfate proteoglycans (HSPG) and chondroitin proteoglycans (CSPG) and perhaps a hybrid PG (HSCSPG). These PG being not retained on an octyl Sepharose column they were devoided of hydrophobic properties. The integral membrane proteoglycans isolated on the basis of their hydrophobic properties represented 20% of the Triton X-100 releasable material, and were exclusively constituted of proteoheparan sulfate. There were no relationships between this membrane HSPG and the peripheral HSPG as evidenced by pulse chase experiments. The mode of intercalation of the hydrophobic HSPG in the cell membrane was studied. The majority of these macromolecules (80%) were sensitive to trypsin and only a minor proportion (20%) were sensitive to phosphatidylinositol specific phospholipase C. Thus, about 80% of the hydrophobic HSPG were intercalated in the cell membrane by a hydrophobic segment of the core protein whereas about 20% were associated with the cell membrane via a phosphatidylinositol residue covalently bound to the core protein of the PG.Abbreviations PG Proteoglycans - CSPG Chondroitin Sulfate Proteoglycans - HSPG Heparan Sulfate Proteoglycans - HSCSPG Heparan and Chondroitin Sulfate Proteoglycans - DNAse I Deoxyribonuclease I - DMEM Dulbeccos modified Eagle's medium - H/D HAM F12/DMEM - ECM Extracellular Matrix - PBS Phosphate Buffered Saline - PI Phosphatidylinositol - GPI Glycosyl Phosphatidylinositol - PI-PLC Phosphatidylinositol Specific Phospholipase C - TBS Tris Buffered Saline - STI Soybean Trypsin Inhibitor - GAG Glycosaminoglycans - HA Hyaluronic Acid  相似文献   

20.
High-performance liquid chromatography using, as adsorbent, novel square tile-shaped hydroxyapatite crystals (with thicknesses of about 2 microns and diameters of 3-7 microns) has been developed. The chromatographic efficiencies of the novel hydroxyapatite packed columns are almost equal to those of the previously developed spherical hydroxyapatite packed columns; high chromatographic resolutions can be obtained by using extremely reduced column lengths of 0.5-3 cm. Since both the square and the spherical hydroxyapatite have roughly the same particle size of some micrometers, the chromatographic efficiency can be deduced to be determined mainly by the particle size rather than the particle shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号