首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used an in vitro assay that reconstitutes transport from the ER to the Golgi complex in yeast to identify a functional vesicular intermediate in transit to the Golgi apparatus. Permeabilized yeast cells, which serve as the donor in this assay, release a homogeneous population of vesicles that are biochemically distinct from the donor ER fraction. The isolated vesicles, containing a post-ER/pre-Golgi form of the marker protein pro-alpha-factor, were able to bind to and fuse with exogenously added Golgi membranes. The ability to isolate fusion competent vesicles provides direct evidence that ER to Golgi membrane transport is mediated by a discrete population of vesicular carriers.  相似文献   

2.
Involvement of GTP-binding "G" proteins in transport through the Golgi stack   总被引:101,自引:0,他引:101  
GTP gamma S irreversibly inhibits protein transport between successive compartments of the Golgi stack in a cell-free system. Fluoride, potentiated by the addition of aluminum ion, also causes a strong inhibition. These are hallmarks of the involvement of a guanine nucleotide-binding or regulatory "G" protein. Inhibition by GTP gamma S requires a cytosolic inhibitory factor that binds to Golgi membranes during inhibition. Preincubation experiments reveal that GTP gamma S blocks the function of acceptor Golgi but not donor Golgi membranes. More specifically, a processing step in between vesicle attachment and the actual fusion event seems to be affected. Electron microscopy demonstrates a corresponding 5-fold accumulation of non-clathrin-coated buds and vesicles associated with the Golgi cisternae during inhibition by GTP gamma S.  相似文献   

3.
Examination of a cell-free reconstitution of intercompartmental transport through the Golgi apparatus has enabled detection of two intermediates in the pathway (Balch, W. E., Glick, B. S., and Rothman, J. E. (1984) Cell 39, 525-536). These intermediates are thought to represent stages in the budding and fusion reactions of transport vesicles mediating such a transport process. Here we describe a new transport intermediate that is interposed between the previously established primed donor formation and the N-ethylmaleimide (NEM)-resistant acceptor intermediates. Consumption of this intermediate requires much less cytosol than its formation, and thus it has been termed the "dilution-resistant" intermediate. The dilution-resistant intermediate only forms in the presence of donor and acceptor membranes, and its consumption is sensitive to NEM. The transition from this state to the later, NEM-resistant form of the prefusion complex requires ATP as well as cytosol and may represent a processing of transport vesicles to permit their fusion.  相似文献   

4.
Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion.  相似文献   

5.
The well-characterized cell-free assay measuring protein transport between compartments of the Golgi [Balch, W. E., Dunphy, W. G., Braell, W. A., & Rothman, J. E. (1984) Cell 39, 405-416] utilizes glycosylation of a glycoprotein to mark movement of that protein from one Golgi compartment to the next. Glycosylation had been thought to occur immediately after vesicles carrying the glycoprotein fuse with their transport target. Therefore, the kinetics of glycosylation were taken to reflect the kinetics of vesicle fusion. We previously isolated and raised monoclonal antibodies against a protein (the prefusion operating protein, POP) which is required in this assay at a step after vesicles have apparently been formed and interacted with the target membranes, but long before glycosylation takes place. This was therefore presumed to be a reaction involving targeted but unfused vesicles. Here we report that POP is identical to uridine monophosphokinase, as revealed by molecular cloning. We show that POP is not active in transport per se but instead enhances the glycosylation used to mark transport. This indicated that, contrary to previous assumptions, glycosylation might lag significantly behind vesicle fusion. We directly show this to be true. This alters the interpretation of several earlier studies. In particular, the previously reported existence of a late, prefusion intermediate, the "NEM-resistant intermediate", can be seen to be due to effects on glycosylation and not indicative of true fusion events.  相似文献   

6.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

7.
Insulin stimulates translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage compartment to the plasma membrane in fat and skeletal muscle cells. At present, the nature of the Glut4 storage compartment is unclear. According to one model, this compartment represents a population of preformed small vesicles that fuse with the plasma membrane in response to insulin stimulation. Alternatively, Glut4 may be retained in large donor membranes, and insulin stimulates the formation of transport vesicles that deliver Glut4 to the cell surface. Finally, insulin can induce plasma membrane fusion of the preformed vesicles and, also, stimulate the formation of new vesicles. In extracts of fat and skeletal muscle cells, Glut4 is predominantly found in small insulin-sensitive 60-70 S membrane vesicles that may or may not artificially derive from large donor membranes during cell homogenization. Here, we use a cell-free reconstitution assay to demonstrate that small Glut4-containing vesicles are formed from large rapidly sedimenting donor membranes in a cytosol-, ATP-, time-, and temperature-dependent fashion and, therefore, do not represent an artifact of homogenization. Thus, small insulin-responsive vesicles represent the major form of Glut4 storage in the living adipose cell. Fusion of these vesicles with the plasma membrane may be largely responsible for the primary effect of insulin on glucose transport in fat tissue. In addition, our results suggest that insulin may also stimulate the formation of Glut4 vesicles and accelerate Glut4 recycling to the plasma membrane.  相似文献   

8.
An assay designed to measure the formation of functional transport vesicles was constructed by modifying a cell-free assay for protein transport between compartments of the Golgi (Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Cell. 39:405-416). A 35-kD cytosolic protein that is immunologically and functionally indistinguishable from alpha SNAP (soluble NSF attachment protein) was found to be required during vesicle formation. SNAP, together with the N-ethylmaleimide-sensitive factor (NSF) have previously been implicated in the attachment and/or fusion of vesicles with their target membrane. We show that NSF is also required during the formation of functional vesicles. Strikingly, we found that after vesicle formation, the NEM-sensitive function of NSF was no longer required for transport to proceed through the ensuing steps of vesicle attachment and fusion. In contrast to these functional tests of vesicle formation, SNAP was not required for the morphological appearance of vesicular structures on the Golgi membranes. If SNAP and NSF have a direct role in transport vesicle attachment and/or fusion, as previously suggested, these results indicate that these proteins become incorporated into the vesicle membranes during vesicle formation and are brought to the fusion site on the transport vesicles.  相似文献   

9.
Cells acquire cholesterol either by de novo synthesis in the endoplasmic reticulum or by internalization of cholesterol-containing lipoproteins, particularly low density lipoprotein (LDL), via receptor-mediated endocytosis. The inherited disorder Niemann-Pick type C (NPC), in which abnormal LDL-cholesterol trafficking from the endo/lysosomal compartment leads to substantial cholesterol and glycolipid accumulation in lysosomes, is caused by defects in either of two genes that encode for proteins designated as NPC1 and NPC2. NPC2 is a small intralysosomal protein that has been characterized biochemically as a cholesterol binding protein. We determined the rate and mechanism by which NPC2 delivers cholesterol to model phospholipid membranes. A fluorescence dequenching assay was used to monitor the kinetics of cholesterol transfer from the protein to membranes. The endogenous tryptophan fluorescence of the NPC2 was quenched upon binding of cholesterol, and the subsequent addition of acceptor vesicles resulted in dequenching of the tryptophan signal, enabling the monitoring of cholesterol transfer to membranes. The rates of cholesterol transfer were evaluated as a function of acceptor vesicle concentration, acceptor vesicle phospholipid headgroup composition, and aqueous phase properties. The results suggest that NPC2 rapidly transports cholesterol to phospholipid vesicles via a collisional mechanism which involves a direct interaction with the acceptor membrane. Transfer of cholesterol to membranes is faster in an acidic environment and is greatly enhanced by the presence of the unique lysosomal/late endosomal phospholipid lyso-bisphosphatidic acid (LBPA) (also known as bismonoacylglycerol phosphate). Finally, we found that the rate of transfer of cholesterol from vesicles to NPC2 was dramatically increased by the presence of lyso-bisphosphatidic acid in the donor vesicles. These results support a role for the NPC2 protein in the egress of LDL derived cholesterol out of the endosomal/lysosomal compartment.  相似文献   

10.
Phosphatidylserine (PtdSer) is transported from its site of synthesis in the endoplasmic reticulum to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole and decarboxylated to form phosphatidylethanolamine. Recent biochemical and genetic evidence has implicated the C2 domain of Psd2p and a membrane-bound form of the phosphatidylinositol binding/transfer protein, PstB2p, as essential for this transport process. We devised a reconstituted system in which chemically defined donor membranes function to transfer PtdSer to the biological acceptor membranes containing Psd2p. The transfer of PtdSer is poor when the donor membranes have a high degree of curvature but markedly enhanced when the membranes are relatively planar (> or =400-nm diameter). PtdSer transfer is also dependent upon both the bulk and the surface concentrations of the lipid, with pure PtdSer vesicles acting as the most efficient donors at all concentrations. The lipid transfer from donor membranes containing either 100% PtdSer or 50% PtdSer at a fixed concentration (e.g. 250 microM PtdSer) differs by a factor of 20. Surface dilution of PtdSer by choline, ethanolamine, glycerol, and inositol phospholipids markedly inhibits PtdSer transfer, whereas phosphatidic acid (PtdOH) stimulates the transfer. Most importantly, the transfer of PtdSer from liposomes to Psd2p fails to occur in acceptor membranes from strains lacking PstB2p or the C2 domain of Psd2p. These data support a model for PtdSer transport from planar domains highly enriched in PtdSer or in PtdSer plus PtdOH.  相似文献   

11.
Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3''s ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes.  相似文献   

12.
Membrane vesicles isolated from Bacillus subtilis W23 catalyze active transport of the C4 dicarboxylic acids L-malate, fumarate, and succinate under aerobic conditions in the presence of the electron donor reduced beta-nicotinamide adenine dinucleotide or the non-physiological electron donor system ascorbate-phenazine methosulfate. The dicarboxylic acids are accumulated in unmodified form. Inhibitors of the respiratory chain, sulfhydryl reagents, and uncoupling agents inhibit the accumulation of the dicarboxylic acids. The affinity constants for transport of L-malate, fumarate, and succinate are 13.5, 7.5, and 4.3 muM, respectively; these values are severalfold lower than those reported previously for whole cells. Active transport of these dicarboxylic acids occurs via one highly specific transport system as is indicated by the following observations. (i) Each dicarboxylic acid inhibits the transport of the other two dicarboxylic acids competitively. (ii) The affinity constants determined for the inhibitory action are very similar to those determined for the transport process. (iii) Each dicarboxylic acid exchanges rapidly with a previously accumulated dicarboxylic acid. (iv) Other metabolically and structurally related compounds do not inhibit transport of these dicarboxylic acids significantly, except for L-aspartate and L-glutamate. However, transport of these dicarboxylic amino acids is mediated by independent system because membrane vesicles from B. subtilis 60346, lacking functional dicarboxylic amino acid transport activity, accumulate the C4 dicarboxylic acids at even higher rates than vesicles from B. subtilis W 23. (v) A constant ratio exists between the initial rates of transport of L-malate, fumarate, and succinate in all membrane vesicle preparations isolated from cells grown on various media. This high-affinity dicarboxylic acid transport system seems to be present constitutively in B. subtilis W23.  相似文献   

13.
Galactose transport was studied in membrane vesicles, prepared by fusion of plasma membranes from the yeast Kluyveromyces marxianus with proteoliposomes containing beef heart cytochrome c oxidase as a proton-motive force-generating system. Sugar transport studies performed under nonenergized conditions revealed that, even at high protein to phospholipid ratios, not all vesicles contained a D-galactose-specific transporter. The amount of vesicles containing an active carrier proved to be proportional to the amount of plasma membrane protein present in the fusion mixture. By addition of a suitable electron donor system a proton-motive force of -160 mV could be generated, inside alkaline and negative. Moreover, D-galactose accumulation was observed. It was found that D-galactose accumulation was highly dependent on the phospholipid composition of the vesicles, whereas generation of a proton-motive force was not. Best results were obtained with vesicles prepared with Escherichia coli phospholipid, giving a galactose accumulation of 14 times. Uphill transport could be established under conditions where only the pH gradient or the electrical gradient was present. Moreover, kinetic analysis of the galactose transport activity in energized vesicles revealed influx with a Km value of 540 microM, which is in good agreement with the apparent affinity constant obtained with whole cells. These results establish that galactose transport of K. marxianus is a proton-motive force-driven process. Moreover it demonstrates that plasma membrane vesicles co-reconstituted with cytochrome c oxidase are a valuable resource for the analysis of proton-motive force-driven sugar transport systems of yeast.  相似文献   

14.
The transfer of phospholipids between two membrane substrates catalyzed by a soluble protein fraction from Rhodopseudomonas sphaeroides has been demonstrated. The assay employs purified intracytoplasmic membrane (ICM) vesicles derived from cells of R. sphaeroides grown on [3H]acetate as the phospholipid donor substrate and phosphatidylcholine (70%)/phosphatidylethanolamine (30%) unilamellar liposomes containing [14C]triolein, a nontransferable marker, as the acceptor substrate for transferred phospholipids. Incubation of these two membrane substrates with a 40 to 80% (NH4)2SO4 protein fraction from R. sphaeroides results in the transfer of tritium-labeled ICM phospholipids to the acceptor membrane substrate. Upon completion of the incubation period, the donor ICM vesicles are quantitatively separated from the acceptor liposomes by precipitation with antibody prepared against whole, purified ICM vesicles. Phospholipid transfer is linear with respect to time and protein concentration, is inhibited by trypsin and heat, and shows an absolute dependence upon the presence of acceptor liposomes and the 40 to 80% (NH4)2SO4 protein fraction. Control experiments indicate that no fusion of the donor and acceptor membrane occurs during the incubation period and that, following prolonged incubation there is no detectable degradation of the labeled lipid components. Preliminary data on the phospholipid specificity of the transfer reaction is also presented.  相似文献   

15.
Study of drug-induced endocytosis in intact human erythrocytes continues to provide an opportunity for correlating membrane functions such as invagination and fusion with erythrocytic energetics and other determinants of plasma membrane function like Ca++. The studies reported indicate that high concentrations of vinblastine and chlorpromazine can produce endocytic vacuoles, albeit in reduced amounts, even in severely ATP depleted erythrocytes. In contrast, primaquine-induced endocytosis seems definitely dependent upon persistence of erythrocytic ATP stores. The ionophore mediated entry of Ca++ into erythrocytes potentiates primaquine endocytosis, inhibits vinblastine endocytosis, and has no regular effect on chlorpromazine endocytosis. Sodium lactate enhances primaquine endocytosis, probably by causing an increase in the entry of primaquine into erythrocytes. Cytochalasin B neither enhances nor inhibits erythrocytic endocytosis, thereby suggesting that microfibrils or analogues of microfibrils in erythrocytes are not involved in endocytosis. Cyclic nucleotide inhibition of endocytosis is confined to a very high concentration range of nucleotides in the medium. Primaquine and chlorpromazine endocytosis are inhibited by cyclic nucleotides as is vinblastine endocytosis.  相似文献   

16.
Glycolipid transport between compartments of the Golgi apparatus has been reconstituted in a cell free system. Transport of lactosylceramide (galactose beta 1-4-glucose-ceramide) was followed from a donor to an acceptor Golgi population. The major glycolipid in CHO cells is GM3 (sialic acid alpha 2-3 galactose beta 1-4-glucose-ceramide). Donor membranes were derived from a Chinese hamster ovary (CHO) cell mutant (Lec2) deficient in the Golgi CMP-sialic acid transporter, and therefore contained lactosylceramide as the predominant glycolipid. Acceptor Golgi apparatus was prepared from another mutant, Lec8, which is defective in UDP-Gal transport. Thus, glucosylceramide is the major glycolipid in Lec8 cells. Transport was measured by the incorporation of labeled sialic acid into lactosylceramide (present originally in the donor) by transport to acceptor membranes, forming GM3. This incorporation was dependent on ATP, cytosolic components, intact membranes, and elevated temperature. Donor membranes were prepared from Lec2 cells infected with vesicular stomatitus virus (VSV). These membranes therefore contain the VSV membrane glycoprotein, G protein. Donor membranes derived from VSV-infected cells could then be used to monitor both glycolipid and glycoprotein transport. Transport of these two types of molecules between Golgi compartments was compared biochemically and kinetically. Glycolipid transport required the N- ethylmaleimide sensitive factor previously shown to act in glycoprotein transport (Glick, B. S., and J. E. Rothman. 1987. Nature [Lond.]. 326:309-312; Rothman, J. E. 1987. J. Biol. Chem. 262:12502-12510). GTP gamma S inhibited glycolipid and glycoprotein transport similarly. The kinetics of transport of glycolipid and glycoprotein were also compared. The kinetics of transport to the end of the pathway were similar, as were the kinetics of movement into a defined transport intermediate. It is concluded that glycolipid and glycoprotein transport through the Golgi occur by similar if not identical mechanisms.  相似文献   

17.
Delivery of transport vesicles to their receptor compartment involves tethering, priming, and fusion. Soluble NSF attachment protein-alpha (alphaSNAP) mediates the disruption of SNAREs by N-ethylmaleimide sensitive factor (NSF) and was employed to determine the hierarchy of proteins responsible for intra-Golgi protein transport. The N-terminal 23 amino acids of alphaSNAP are necessary for SNARE binding. The antibody 2F10 recognizes this SNARE interaction domain of alphaSNAP and inhibits intra-Golgi protein transport reversibly. This antibody was applied to modify the transport assay to determine the protein requirements relative to the action of alphaSNAP and NSF. We found that 1) p115 acts independently of alphaSNAP and NSF, 2) SNAREs are required after tethering and interact selectively after activation by alphaSNAP and NSF, and 3) Rab proteins act after SNARE activation and before fusion.  相似文献   

18.
Transport of the vesicular stomatitis virus (VSV)-encoded glycoprotein (G protein) between successive compartments of the Golgi in a cell-free system is measured by the coupled incorporation of N-[3H]acetylglucosamine (GlcNAc). This glycosylation occurs when G protein is transported from a "donor" compartment in Golgi membranes that lack GlcNAc transferase I (from VSV-infected CHO clone 15B cells) to the next "acceptor" compartment in a Golgi population from wild-type CHO cells (containing the GlcNAc transferase but not G protein). Here we present a detailed characterization of the conditions required to achieve transport in vitro. We find that donor and acceptor activities differ markedly in certain of their properties. The donor activity is inhibited by N-ethylmaleimide but the acceptor activity is resistant. Donor activity is unstable in the absence of ATP or the cytosol fraction; acceptor activity is much more stable. This asymmetry may reflect the vectorial nature of the underlying biochemistry of protein transport. Both donor and acceptor are trypsin-sensitive, implying a need for cytoplasmically oriented membrane proteins. Transport occurs only in a restricted range of close to physiological conditions. ATP is absolutely required, although as little as 1 microM is sufficient. Transport is inhibited by ATP-gamma-sulfate and vanadate, suggesting that ATP hydrolysis is needed. By contrast, ionophores that dissipate membrane potentials and proton gradients do not inhibit transport. Monensin was also without effect in the cell-free system.  相似文献   

19.
We have identified a 25-kD cytosolic yeast protein that mediates a late, prefusion step in transport of proteins between compartments of the Golgi apparatus. Activity was followed using the previously described cell free assay for protein transport between Golgi compartments as modified to detect late acting cytosolic factors (Wattenberg, B. W., and J. E. Rothman. 1986. J. Biol. Chem. 263:2208-2213). In the reaction mediated by this protein, transport vesicles that have become attached to the target membrane during a preincubation are processed in preparation for fusion. The ultimate fusion event does not require the addition of cytosolic proteins (Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Cell. 39:525-536). Although isolated from yeast, this protein has activity when assayed with mammalian membranes. This protein has been enriched over 150-fold from yeast cytosol, albeit not to complete homogeneity. The identity of a 25-kD polypeptide as the active component was confirmed by raising monoclonal antibodies to it. These antibodies were found to specifically inhibit transport activity. Because this is a protein operating in prefusion, it has been abbreviated POP.  相似文献   

20.
Zucker SD 《Biochemistry》2001,40(4):977-986
The mechanism (or mechanisms) whereby fatty acids and other amphipathic compounds are transported from the plasma membrane to intracellular sites of biotransformation remains poorly defined. In an attempt to better characterize the role of cytosolic binding proteins in this process, a kinetic model of intermembrane ligand transport was developed in which diffusional transfer of ligand between membrane and protein is assumed. The model was tested by utilizing stopped-flow techniques to monitor the transfer of the fluorescent fatty acid analogue, 12-anthroyloxy stearate (12-AS), between model membrane vesicles. Studies were conducted in the presence or absence of bovine serum albumin (BSA), liver fatty acid-binding protein (L-FABP), and intestinal fatty acid-binding protein (I-FABP) in order to determine the effect of soluble proteins on the rate of intermembrane ligand transfer. As predicted by the model, the initial velocity of 12-AS arrival at the acceptor membrane increases in an asymptotic manner with the acceptor concentration. Furthermore, probe transfer velocity was found to decline asymptotically with increasing concentrations of BSA or L-FABP, proteins that exhibit diffusional transfer kinetics. This observation was found to hold true independent of whether donor or acceptor vesicles were preequilibrated with the protein. In contrast, 12-AS transfer velocity exhibited a linear correlation with the concentration of I-FABP, a protein that is thought to transport fatty acids, at least in part, via a collisional mechanism. Taken together, these findings validate the derived kinetic model of protein-mediated ligand transport and further suggest that the mechanism of ligand-protein interaction is a key determinant of the effect of cytosolic proteins on intracellular ligand diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号