首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanosine 5′-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5′-diphosphate (GDP)-l-fucose. In this study, improvement of GDP-l-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-l-fucose. The effects of overexpression of inosine 5′-monophosphate (IMP) dehydrogenase, guanosine 5′-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine–inosine kinase (Gsk) on GDP-l-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-l-fucose production. Maximum GDP-l-fucose concentration of 305.5 ± 5.3 mg l−1 was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes. Such an enhancement of GDP-l-fucose production could be due to the increase in the intracellular level of GMP.  相似文献   

2.
A selection system based on the phosphomannose-isomerase gene (pmi) as a selectable marker and mannose as the selective agent was evaluated for the transformation of apple (Malus domestica Borkh.). Mannose is an unusable carbon source for many plant species. After uptake, mannose is phosphorylated by endogenous hexokinases to mannose-6-phosphate. The accumulation of mannose-6-phosphate leads to a block in glycolysis by inhibition of phosphoglucose-isomerase, resulting in severe growth inhibition. The phosphomannose-isomerase is encoded by the manA gene from Escherichia coli and catalyzes the conversion of mannose-6-phosphate to fructose-6-phosphate, an intermediate of glycolysis. Transformed cells expressing the manA gene can therefore utilize mannose as a carbon and survive on media containing mannose. The manA gene along with a β-glucuronidase (GUS) gene was transferred into apple cv. ‘Holsteiner Cox’ via Agrobacterium tumefaciens-mediated transformation. Leaf explants were selected on medium supplemented with different concentrations and combinations of mannose and sorbitol to establish an optimized mannose selection protocol. Transgenic lines were regenerated after an initial selection pressure of 1–2 g l−1 mannose in combination with 30 g l−1 sorbitol followed by a stepwise increase in the mannose concentration up to 10 g l−1 and simultaneous decrease in the sorbitol concentration. Integration of transgenes in the apple genome of selected plants was confirmed by PCR and southern blot analysis. GUS histochemical and chlorophenol red (CPR) assays confirmed activity of both transgenes in regenerated plants. The pmi/mannose selection system is shown to be highly efficient for producing transgenic apple plants without using antibiotics or herbicides.  相似文献   

3.
Summary The capacity of two Trichoplusia ni (TN-368 and BTI-Tn-5bl-4) and a Spodoptera frugiperda (IPLB-SF-21A) cell lines to glycosylate recombinant, baculovirus-encoded, secreted, placental alkaline phosphatase was compared. The alkaline phosphatase from serum-containing, cell culture medium was purified by phosphate affinity column chromatography. The N-linked oligosaccharides were released from the purified protein with PNGase F and analyzed by fluorophore-assisted carbohydrate electrophoresis. The majority of oligosaccharide structures produced by the three cell lines contained two or three mannose residues, with and without core fucosylation, but there were structures containing up to seven mannose residues. The oligosaccharides that were qualitatively or quantitatively different between the cell lines were sequenced with glycosidase digestions. The S. frugiperda cells produced more fucosylated oligosaccharides than either of the T. ni cell lines. The smallest oligosaccharide produced by S. frugiperda cells was branched trimannose. In contrast, both T. ni cell lines produced predominantly dimannose and linear trimannose structures devoid of α 1–3-linked mannose.  相似文献   

4.
A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.  相似文献   

5.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

6.
The effects of silicate and glucose on growth and eicosapentaenoic acid (EPA) production by the diatom Nitzschia laevis were studied. By alternately altering the concentrations of silicate (2.7–64 mg l−1) and glucose (1–40 g l−1) in the medium, the highest cell dry weight (ca. 5.5 g l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest specific growth rate (ca. 0.65 day−1) was obtained at a relatively low glucose concentration (5 g l−1) and high silicate concentrations (32–64 mg l−1). At glucose levels of 5 and 20 g l−1, EPA content was higher with lower silicate concentrations (2.7 and 16 mg l−1 silicate, respectively), while at a silicate level of 16 mg l−1, higher glucose concentrations (20–40 g l−1) facilitated EPA formation. The highest EPA yield (131 mg l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest EPA productivity (15.1 mg l−1 day−1) was obtained at 20 g l−1 glucose and 64 mg l−1 silicate. Journal of Industrial Microbiology & Biotechnology (2000) 25, 218–224. Received 08 May 2000/ Accepted in revised form 21 July 2000  相似文献   

7.
We investigated the influence of inorganic phosphate concentration on the production of curdlan by Agrobacterium species. A two-step culture method was employed where cells were first cultured, followed by curdlan production under nitrogen-limiting conditions. In the curdlan production step, cells did not grow but metabolized sugar into curdlan. Shake-flask experiments showed that the optimal phosphate concentration for curdlan production was in the range of 0.1–0.3 g l−1. As the cell concentration increased from 0.42 to 1.68 g l−1 in shake-flask cultures, curdlan production increased from 0.44 to 2.80 g l−1. However, the optimal phosphate concentration range was not dependent upon cell concentration. The specific production rate was about 70 mg curdlan g-cell−1 h−1 irrespective of cell concentration. When the phosphate concentration was maintained at 0.5 g l−1 under nitrogen-limiting conditions, as high as 65 g l−1 of curdlan was obtained in 120 h. Journal of Industrial Microbiology & Biotechnology (2000) 25, 180–183. Received 25 October 1999/ Accepted in revised form 21 July 2000  相似文献   

8.
For the first time, the phosphomannose isomerase (PMI, EC 5.3.1.8)/mannose-based “positive” selection system has been used to obtain genetically engineered sugarcane (Saccharum spp. hybrid var. CP72-2086) plants. Transgenic lines of sugarcane were obtained following biolistic transformation of embryogenic callus with an untranslatable sugarcane mosaic virus (SCMV) strain E coat protein (CP) gene and the Escherichia coli PMI gene manA, as the selectable marker gene. Postbombardment, transgenic callus was selectively proliferated on modified MS medium containing 13.6 μM 2,4-D, 20 g l−1 sucrose and 3 g l−1 mannose. Plant regeneration was obtained on MS basal medium with 2.5 μM TDZ under similar selection conditions, and the regenerants rooted on MS basal medium with 19.7 μM IBA, 20 g l−1 sucrose, and 1.5 g l−1 mannose. An increase in mannose concentration from permissive (1.5 g l−1) to selective (3 g l−1) conditions after 3 weeks improved the overall transformation efficiency by reducing the number of selection escapes. Thirty-four vigorously growing putative transgenic plants were successfully transplanted into the greenhouse. PCR and Southern blot analyses showed that 19 plants were manA-positive and 15 plants were CP-positive, while 13 independent transgenics contained both transgenes. Expression of manA in the transgenic plants was evaluated using a chlorophenol red assay and enzymatic analysis.  相似文献   

9.
Transgenic torenia plants were obtained using the selectable marker gene phosphomannose isomerase (manA), which encodes the enzyme phosphomannose isomerase (PMI) to enable selection of transformed cells on media containing mannose. We found that shoot organogenesis in torenia leaf explants was effectively suppressed on medium supplemented with mannose, which indicated that torenia cells had little or no PMI activity and could not utilize mannose as a carbon source. Leaf pieces from in vitro-germinated plants were inoculated with Agrobacterium tumefaciens EHA105 containing the binary vector pKPJ with both hpt and ManA genes, and subsequently selected on shoot induction (SI) medium (half strength MS basal + 4.4 μM BA + 0.5 μM NAA) supplemented with 20 g l−1 mannose and 5 g l−1 sucrose as carbon sources. Transformed plants were confirmed by PCR and Southern blot. The transgene expression was evaluated using Northern blot and the chlorophenol red assay. The transformation efficiency ranged from 7% to 10%, which is 1–3% higher than that obtained by selection with hygromycin. This system provides an efficient manner for selecting transgenic flower plants without using antibiotics or herbicides.  相似文献   

10.
Attempts were made with success to develop a two-step biocatalytic process for uridine 5′-monophosphate (UMP) production from orotic acid by Corynebacterium ammoniagenes ATCC 6872: the strain was first cultivated in a high salt mineral medium, and then cells were harvested and used as the catalyst in the UMP production reaction. Effects of cultivation and reaction conditions on UMP production were investigated. The cells exhibited the highest biocatalytic ability when cultivated in a medium containing corn steep liquor at pH 7.0 for 15 h in the exponential phase of growth. To optimize the reaction, both “one-factor-at-a-time” method and statistical method were performed. By “one-factor-at-a-time” optimization, orotic acid, glucose, phosphate ion (equimolar KH2PO4 and K2HPO4), MgCl2, Triton X-100 were shown to be the optimum components for the biocatalytic reaction. Phosphate ion and C. ammoniagenes cell were furthermore demonstrated as the most important main effects on UMP production by Plackett–Burman design, indicating that 5-phosphoribosyl-1-pyrophosphate (PRPP) synthesis was the rate-limiting step for pyrimidine nucleotides production. Optimization by a central composition design (CCD) was then performed, and up to 32 mM (10.4 g l−1) UMP was accumulated in 24 h from 38.5 mM (6 g l−1) orotic acid. The yield was threefold higher than the original UMP yield before optimization.  相似文献   

11.
Cultures able to dechlorinate cis-1,2-dichloroethene (cDCE) were selected with ethene (3–20%, v/v) as the sole source of carbon and energy. One mixed culture (K20) could degrade cDCE (400 μmol l–1) or vinyl chloride (100 μmol l–1) in the presence of ethene (≤ 80 μmol l–1 and ≤ 210 μmol l–1, respectively). This culture consists of at least five bacterial strains. All five strains were able to degrade cDCE cometabolically in pure culture. The mixed culture K20 was highly tolerant against cDCE (up to 6 mmol l–1 in the liquid phase). Degradation of cDCE (200 μmol l–1) was not affected by the presence of trichloroethene (100 μmol l–1) or tetrachloroethene (100 μmol l–1). Transformation yields (Ty, defined as unit mass of chloroethene degraded per unit mass of ethene consumed) of the mixed culture K20 were relatively high (0.51 and 0.61 for cDCE and vinyl chloride, respectively). The yield for cDCE with ethene as auxiliary substrate was ninefold higher than any values reported with methane or methane/formate as auxiliary substrate. The viability of the cells of the mixed culture K20 (0.3 mg of cells ml–1) was unaffected by the transformation of ≤ 200 μmol l–1 cDCE in 300 min. Received: 9 March 1999 / Accepted: 21 July 1999  相似文献   

12.
A new selection system for onion transformation that does not require the use of antibiotics or herbicides was developed. The selection system used the Escherichia coli gene that encodes phosphomannose isomerase (pmi). Transgenic plants carrying the manA gene that codes for pmi can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the pmi activity. Six-week-old embryogenic callus initiated from seedling radicle was used for transformation. Transgenic plants were produced efficiently with transformation rates of 27 and 23% using Agrobacterium and biolistic system, respectively. Untransformed shoots were eliminated by a stepwise increase from 10 g l−1 sucrose with 10 g l−1 mannose in the first selection to only10 g l−1 mannose in the second selection. Integrative transformation was confirmed by PCR, RT-PCR and Southern hybridization. An erratum to this article can be found at  相似文献   

13.
 In this research, a medium was developed that would stimulate multiple shoot initiation from shoot apex explants of Hibiscus cannabinus L. (kenaf). Adventitious shoot formation on a shoot induction media supplemented with combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) (0, 0.5, 2.3 μmol·l–1) and thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) (0, 1, 5, 20 μmol·l–1) was evaluated. Multiple shoot induction medium with 1 μmol·TDZ l–1 resulted in the highest number of regenerated shoots per explant for all three kenaf cultivars tested (Tainung 1, Tainung 2, and Everglades 71). The 2,4-D did not enhance multiple shoot formation. Additionally, kenaf cultivars 7N and SF459 also produced multiple shoots on the induction medium with 1 μmol·TDZ l–1. Multiple shoot clumps formed after 2 weeks in culture without callus formation. Shoots elongated and rooted within 2 weeks after subculture on a plant growth regulator-free medium. A histological study demonstrated the de novo regeneration of shoots from the shoot apex. Received: 2 February 2000 / Revision received: 30 March 2000 / Accepted: 22 June 2000  相似文献   

14.
W. Tang 《Plant cell reports》2000,19(7):727-732
 The morphogenesis ability of light yellowish globular callus derived from cotyledons of mature zygotic embryos of Panax ginseng was investigated. The optimal media for somatic embryogenesis and shoot organogenesis were MS medium containing 0.5 mg l–1 2,4-dichlorophenoxyacetic acid, 0.1 mg l–1 6-benzyladenine (BA), and 500 mg l–1 lactoalbumin hydrolysate, and SH medium supplemented with 0.5 mg l–1 α-naphthaleneacetic acid, 0.1 mg l–1 BA, and 500 mg l–1casein hydrolysate. The influences of glucose, mannose, fructose, and sorbose in the media on somatic embryogenesis and shoot organogenesis were revealed as differences in the numbers of somatic embryos and adventitious shoots per gram of morphogenic callus. The best regeneration of somatic embryos was obtained on medium containing glucose, with a mean of 8.7 somatic embryos per gram of callus. The best regeneration of shoots was observed on medium containing fructose, with an average of 12.2 adventitious shoots per gram of callus. Of the somatic embryos 95% were converted into regenerated plantlets, and 100% of adventitious shoots rooted to form regenerated plantlets. Regenerated plants were successfully established in soil. Flowering was observed in 5.7% of the regenerated plants derived from shoot organogenesis and in 1.4% of the regenerated plants derived from somatic embryogenesis. Received: 1 December 1998 / Revision received: 13 September 1999 / Accepted: 20 September 1999  相似文献   

15.
Biosynthesis of guanosine 5′-diphosphate-l-fucose (GDP-l-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP+-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-l-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-l-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-l-fucose production. However, GDP-l-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-l-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-l-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-l-fucose concentration of 235.2 ± 3.3 mg l−1, corresponding to a 21% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-l-fucose production in recombinant E. coli.  相似文献   

16.
Individual nutrient salts were experimentally varied to determine the minimum requirements for efficient l(+)-lactate production by recombinant strains of Escherichia coli B. Based on these results, AM1 medium was formulated with low levels of alkali metals (4.5 mM and total salts (4.2 g l−1). This medium was equally effective for ethanol production from xylose and lactate production from glucose with average productivities of 18–19 mmol l−1 h−1 for both (initial 48 h of fermentation).  相似文献   

17.
Escherichia coli strain HS3, metabolically engineered to have Met, AHVr, IleL and AECr characteristics, produced 58.0 g/l of l-threonine, but it was neither salt-tolerant nor osmotolerant; and the growth and threonine production of the strain were severely inhibited both by the addition of NaCl with a concentration higher than 2% and by the presence of glucose with a concentration higher than 10%. Therefore, salt-tolerant mutants were isolated. The salt-tolerant mutants, HS454 and HS528 which were derived from strain HS3, were both tolerant to salt (2%) and hyperproductive. The growth and l-threonine production by the mutant strain HS454 were almost unaffected by a glucose concentration lower than 10%, but gradually reduced with increasing glucose concentration, up to 15%. However, the mutant strain HS528 showed slightly enhanced growth and l-threonine production with increasing glucose concentration, up to 10–12.5%. Strains HS454 and HS528 produced 69.8 g/l and 74.0 g/l of l-threonine, respectively in a 5-l jar fermentor. Received: 21 January 2000 / Received revision: 31 March 2000 / Accepted: 5 May 2000  相似文献   

18.
A production system of UDP-N-acetylglucosamine (UDP-GlcNAc) was established by using recombinant Escherichia coli and Corynebacterium ammoniagenes in combination. E. coli overexpressed the UDP-GlcNAc biosynthetic genes, glmM, glmU, glk, ppa, ack, and pta, whereas C. ammoniagenes contributed to the formation of UTP from orotic acid. Glucose 1,6-diphosphate (Glc-1,6-P2), which was required for the activity of phosphoglucosamine mutase involved in UDP-GlcNAc biosynthesis, was supplied by phosphoglucomutase and phosphofructokinase. Starting with orotic acid (65 mM) and glucosamine (400 mM), UDP-GlcNAc accumulated at 11.4 mM (7.4 g l–1) after 8 h.  相似文献   

19.
The marine myxobacterium strain NU-2, which can grow on high concentrations (up to 7%) of NaCl, was isolated from a salt soil sample collected from the coast of the Huanghai Sea, China. Morphological properties and 16S rDNA sequence analysis indicated that the isolate is a novel species related to the genus Nannocystis. Nannocystis sp. NU-2 produced a new kind of flocculating substance in a starch medium with a yield of 14.8 g l–1. The NU-2 flocculant was composed of 40.3% proteins and 56.5% polysaccharides, of which glucose, mannose and glucuronic acid were the principal constituents in the relative proportions of 5:4:1. The flocculation activity of the NU-2 flocculant depends strongly on cations such as Fe3+ and Al3+. When a 30 mg l–1 FeCl3 solution is present in kaolin clay suspension, 30 mg l–1of the flocculant produced a high flocculating activity value of 90%, which remained unchanged over an extensive pH range (pH 2.0–13.0). The flocculant was tested for its ability to bleach dyeing liquors, and the bleaching activities were 98.2% for acid red in 100 mg l–1of the flocculant and 99.0% for direct emerald blue in 50 mg l–1of the flocculant under test conditions. Use of the flocculant to bleach basic pink and cation emerald blue liquors was not effective. Electronic Publication  相似文献   

20.
A pH-auxostatic fed-batch process was developed for the secretory production of a fusion protein consisting of the pro-part of Staphylococcus hyicus lipase and two synthetic human calcitonin (hCT) precursor repeats under the control of a xylose-inducible promotor from Staphylococcus xylosus. Using glycerol as the energy source and pH-controlled addition of yeast extract resulted in the production of 2000 mg l−1 of the fusion protein (420 mg l−1 of the recombinant hCT precursor) within 14 h, reaching 45 g l−1 cell dry mass with Staphylococcus carnosus in a stirred-tank reactor. Product titer and space-time yield (30 mg calcitonin precursor l−1 h−1) were thus improved by a factor of 2, and 4.5, respectively, compared to Escherichia coli expression-secretion systems for the production of calcitonin precursors. Two hundred grams of the fusion protein was secreted by the recombinant S. carnosus on a 150-l scale (scale-up factor of 50) with a minimum use of technical-grade yeast extract (40 mg fusion protein g−1 yeast extract). Received: 18 January 2000 / Received revision: 14 April 2000 / Accepted: 14 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号