首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Robert W. Pearcy 《Oecologia》1976,26(3):245-255
Summary Comparative measurements of CO2 exchange and growth rates were made on Atriplex lentiformis (Torr.) Wats. plants from populations native to coastal as well as desert habitats in southern California. While both had similar CO2 exchange rates at moderate growth temperatures, the desert plants had a substantially greater capacity to acclimate to high growth temperatures indicating that clear ecotypic differences in acclimation capacity are present in this species. This large capacity for photosynthetic acclimation resulted in nearly equal CO2 exchange rates of the desert plants under the different day temperatures characteristic of the desert habitat during the summer and winter months. In contrast, the photosynthetic CO2 exchange rates of the coastal plants was markedly reduced by high growth temperatures. The large acclimation capacity of the desert plants may function to maintain high productivities during both the winter and summer months but would not be required in the coastal plants because of the moderate temperatures throughout the year in their native habitat.Relative growth rates (RGR) of the coastal and desert plants were similar at 23°C day/18°C night and 33°C day/25°C night growth temperatures. At 43°C day/30°C night temperatures, however, the RGR of the desert plants was higher than that of the coastal plants. Thus, the larger acclimation capacity of the desert plants is related to a greater ability to maintain high growth rates over a wide range of temperatures as compared to the coastal plants. Small differences in allocation patterns could account for differences in the comparative photosynthetic responses and growth rates in each temperature regime.Supported by National Science Foundation grant # GB 36311  相似文献   

2.
Summary The survival potential of lichens in a given habitat is determined by the response of CO2 exchange to photosynthetically active radiation (PhAR), thallus temperature, and thallus relative water content (RWC). Therefore morphologically similar lichens from contrasting climatic environments 1) should differ in their CO2 exchange responses, and 2) these differences should reflect adaptations to their climatic regimes. The CO2 exchange responses of a subarctic (55°N, 67°W) Cladina stellaris (Opiz) Brodo population and a temperate (29°N, 82°W) Cladina evansii (Abb.) Hale and W. Culb, population were used to test these two related hypotheses.Infrared gas analysis with lichens collected in September–October 1975 established that the two populations differed in their responses to incident PhAR, thallus temperature, and thallus RWC. Net photosynthesis in C. stellaris had an optimum at a lower temperature and a greater relative photosynthetic capacity at low temperatures than did C. evansii. Cladina evansii maintained net photosynthesis above 35°C thallus temperature; C. stellaris did not. In both species the optimum temperature for net photosynthesis increased with increasing irradiance. The C. stellaris light saturation point was consistently lower than that of C. evansii. Both species had maximal rates of net photosynthesis at 70–80% relative water content. In C. evansii the CO2 exchange rates, expressed as percentages of the maximum rate, declined more rapidly under suboptimal conditions. The absolute CO2 exchange rates of C. evansii were greater than those of C. stellaris. At 20°C and 90–95% RWC, resaturation respiration occurred in both species and continued until 6–7 h after wetting.Contrasts in the temporal patterns of thallus condition at each collection site suggest that not all differences in the two response surfaces reflect climatic adaptation. The two populations appear well adapted to incident PhAR and thallus temperature regimes but the 70–80% RWC optimum for net photosynthesis common to both species is puzzling since their water regimes differ markedly. The overall adaptedness of the CO2 exchange responses in the two species cannot be judged without a comprehensive quantitative analysis of carbon balance under differing climatic regimes.  相似文献   

3.
Summary Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20–25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.  相似文献   

4.
Park S. Nobel 《Oecologia》1981,48(2):194-198
Summary Coryphantha vivipara (Nutt.) Britton & Rose var. deserti (Engelm.) W.T. Marshall (Cactaceae) survived snow and tissue temperatures of-12°C in southern Nevada. However, the freezing point depression of the cell sap was only about 0.9°C. When the nocturnal air temperature in the laboratory was reduced from 10°C to-10°C for one night, the optimum temperature for CO2 uptake shifted from 10°C to 6°C and uptake was reduced 70%, but full recovery to the original values occurred in 4 days. Nocturnal temperatures of-15°C killed 2 out of 5 plants and-20°C killed 5 out of 5, as judged by lack of net CO2 uptake at night over a 2-month observation period. when the stems were cooled at 2° C/h, supercooling to about-6°C occurred followed by an exothermic reaction that presumably represented the freezing of extracellular water. When the subzero temperature was lowered further, no other exothermic reaction was observed and the cells became progressively dehydrated. Freezing-induced tissue death was ascribed to this cellular dehydration, which led to about 94% loss of intracellular water at-15°C. when the tissue temperature was lowered, the ability of chlorenchyma cells to plasmolyze and to take up a stain decreased, both being nearly 70% inhibited at-15°C and completely abolished at-20°C. Some cold-bardening occurred, since lowering the air temperature from 30° to-10°C in 10°C increments at weekly intervals caused the subzero temperature for 50% inhibition of staining to decrease from-10°C to-17°C. Extension of the range of C. vivipara to regions with wintertime freezing apparently reflects the tolerance of considerable freeze dehydration by its protoplasts.  相似文献   

5.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

6.
Multifactorial experiments were performed to study the diurnal dynamics of CO2 exchange in intact cucumber plants (Cucumis sativus L.). Based on experimental data, we analyzed the models of net photosynthesis, night respiration, and biomass accumulation. This analysis allowed us to resolve the growth component of respiration and to determine the diurnal temperature pattern that is optimal for biomass accumulation. It was found that the most profound transformation of assimilates into the biomass occurs under the maximum ratio of growth respiration to maintenance respiration. Under the experimental conditions used, this requirement was fulfilled at a temperature of 25°C during the photoperiod (optimum of net photosynthesis) and at subsequent gradual cooling to a hardening temperature (13°C by the end of the night).  相似文献   

7.
Rapid acclimation of root hydraulic conductivity to low temperature   总被引:14,自引:5,他引:9  
Root hydraulic conductance of many species is substantially reduced by exposure to low temperatures. The objective of this research was to investigate the decrease and recovery of root hydraulic conductivity in spinach (Spinacia oleracea L.) root systems upon exposure to low temperature. Root hydraulic conductivity (Lp) was determined for detached whole root systems as the slope of the flux and an applied pressure gradient. Water flux (Jv), of root systems grown at 20C, decreased immediately upon exposure to 5C. After 2-5 h Jv recovered and reached a stable value after 12 h exposure to 5°C. In separate experiments, the root Lp of plants acclimated for 7 d at 5°C was 125% greater than that of isolated root systems acclimated for 12 h at 5°C. Lp of plants grown and measured at 5°C was about 50% of the Lp of plants grown and measured at 20°C. The rapid acclimation to low temperatures observed in detopped root systems was also indicated in intact plants at 20/5°C (shoot/root temperatures) using mass flow porometry. Acclimation of the root system after exposure to 5°C was apparent by recovery of stomatal opening. These results indicate that spinach root systems have the ability to acclimate rapidly to changes in temperature and to continue acclimating during prolonged exposure to low temperature.  相似文献   

8.
W. F. Ruetz 《Oecologia》1973,13(3):247-269
Summary Completely climatized cuvettes were used to follow the CO2 gas exchange of red fescue (Festuca rubra L.), growing on a fertilized and an unfertilized plot, during a growing season from May through October. Objective of the study was to determine the effect of environmental factors on the seasonal CO2 gas exchange.Gas exchange rates were calculated on the basis of leaf dry weight, surface area and chlorophyll content. Photosynthetic rates differed between the fertilized and unfertilized plants when based on leaf dry weight or leaf surface area but were similar when based on chlorophyll.Multiple regression analysis was used to related photosynthetic rates to radiation, temperature, water vapor concentration difference, chlorophyll content and time. A cubic regression equation based on daily radiation alone explained 85% of the variation for the fertilized plants and 87% of the variation for the unfertilized plants.During the growing season the unfertilized plants had a continual decline in their photosynthetic rates. The fertilized plants had high photosynthetic rates in the spring and in the fall.Light response curves indicated greater photosynthetic rates at light saturation as well as in the light limited portion of the light response curve for the fertilized plants. Photosynthetic rates of the fertilized plants were generally depressed during periods of warm temperature and high light intensity in June and July.Photosynthetic rates declined at temperatures above 24°C. The decline was greater for the more mesomorphic fertilized plants. A similar response was noted to increasing water vapor difference, although it was difficult to separate from the temperature effect. Maximum photosynthetic rates were found between 14°C and 22°C, although there was considerable variation in the maximum rates.The effects of cutting (mowing) on the gas exchange were difficult to determine due to the interaction of the environmental factors.Chlorophyll content showed significant correlation with photosynthetic rates.  相似文献   

9.
Summary The snake-head fish (Channa argus) is an obligate air-breather inhabiting fresh waters in the temperate zone of East Asia.Ventilation of the air-breathing organ and aerial gas exchange were measured in 1 to 2 kg specimens at 15 and 25°C. Additionally, the ventilatory responses to hypoxia and hypercapnia were studied. Aerial ventilation increased from 1.1 to 2.9 mlbtps·kg–1·min–1 when temperature rose from 15 to 25°C. Concomitantly, O2-uptake through airbreathing increased from 0.1 mlstpd·kg–1·min–1 (15°C) to 0.28 mlstpd·kg–1·min–1 (25°C), whereas aerial gas exchange was less important for CO2-climination as evident from low gas exchange ratios (0.16 at 15°C, 0.29 at 25°C).Ventilation increases only slightly in response to inspiration of hypercapnic gas mixtures or to hypoxic conditions in water. By contrast, inspiration of hypoxic gas mixtures caused marked increases of ventilation in particular at the higher temperature.Aerial ventilation inChanna is low compared to values for ectothermic pulmonary breathers. However, its ventilatory responses to hypoxia strikingly resemble those of reptiles: The most marked ventilatory response to hypoxia occurs at the higher temperature where the demands for O2 are greatest.  相似文献   

10.
Summary Leaf gas exchange of Vigna unguiculata was influenced by short-term (day-to-day) changes in soil temperature and the response depended upon the aerial environment. When aerial conditions were constant at 30° C leaf temperature, high air humidity and moderate quantum flux, CO2 assimilation rate and leaf conductance increased with increases in soil temperature from 20 to 35° C, and this response was reversible. Decreases in CO2 assimilation rate and leaf conductance were observed at root temperatures above 30° C when root temperatures were increased from 20° C to 40° C and when air humidity was decreased in steps during the day. In contrast, varying soil temperatures between 20 to 35° C had no influence on gas exchange when shoots were subjected to a wide range of temperatures during each day.The gain ratio A/E remained constant at different air humidities when root temperature was less than or equal to 30° C indicating optimal gas exchange regulation, but changed with humidity at higher root temperatures. Leaf conductance responded independently from leaf water potential which remained relatively constant during individual experiments.The results indicate that plant responses to high root temperatures may have relevance to plant performance in semi-arid environments. They also illustrate the importance of controlling soil temperatures when studying the responses of potted plants in controlled aerial environments.Dedicated to K.F. Springer  相似文献   

11.
Costa  E.S.  Bressan-Smith  R.  Oliveira  J.G.  Campostrini  E. 《Photosynthetica》2003,41(1):77-82
Bean plants Phaseolus vulgaris L. (cv. Carioca and Negro Huasteco) and Vigna unguiculata L. Walp (cv. Epace-10) were grown in a growth chamber with a photosynthetic photon flux density of 200 mol m–2 s–1 at leaf level and air temperature of 25+1 °C. Fully expanded, first pair leaves of 12-d-old plants were submitted for 90 min to high temperature (25, 30, 35, 40, 45, and 48 °C). Chlorophyll a fluorescence parameters (ETR, qP, qN, and F0) were investigated using a modulated fluorimeter at 25 °C during recovery considered here as 48 h after stress induction period. An accentuated decrease in qP and an increase in qN at 48 °C in Carioca and Negro Huasteco was not observed in Epace-10. In response to excitation irradiance a great potential for ETR was found in Negro Huasteco at 25 °C, also demonstrated by net photosynthetic rate. At 48 °C ETR was high for Epace-10 while it was equal to zero for Carioca and Negro Huasteco. Tolerance to high temperature observed in Epace-10 provided important information about the adaptative characteristics of Vigna cultivars to warm climates.  相似文献   

12.
Summary The gas exchange characteristics of two C3 desert annuals with contrasting phenologies, Geraea canescens T. & G. (winter-active) and Dicoria canescens T. & G. (summer-active), both Asteraceae, were determined for plants grown under a moderate (25°/15° C, day/night temperature) and a high (40°/27° C) growth temperature regime. Both species had high photosynthetic capacities; maximum net photosynthetic rates were 38 and 48 mol CO2 m-2 s-1 for Geraea and Dicoria, respectively, and were not influenced by growth temperature regime. However, the temperature optima of net photosynthesis shifted from 26° C for Geraea and from 28° C for Dicoria when grown under the moderate temperature regime to 31° C for both species when grown under the high temperature regime. Although the shifts in temperature optima were smaller than those observed for many desert perennials, both species showed substantial increases in photosynthetic rates at high temperatures when grown at 40°/27° C. In general, the gas exchange characteristics of Geraea and Dicoria were very similar to each other and to those reported for other C3 desert annuals. Geraea and Dicoria experienced different seasonal patterns of change in several environmental variables. For Geraea, maximum daily air temperature (T a) increased from 24° to 41° C over its growing season while Dicoria experienced maximum T a at midseason (45° C). At points during their respective growing seasons when midday T a ranged between 35° and 40° C, leaf temperatures (T 1) of both species were below T a and, therefore, were closer to the photosynthetic temperature optima measured in the laboratory. Leaf conductances to water vapor (g 1) and water potentials () were high at these times, but later in their growing seasons Dicoria maintained high g 1 and while Geraea showed large decreases in these quantities. The ability of Dicoria to successfully growth through the hot, dry summers of the California deserts may be related to its ability to acquire the available water in locally mesic habitats.  相似文献   

13.
Summary The temperatures at which chlorophyll fluorescence yield is substantially increased and the temperatures at which the quantum yield for CO2 uptake is irreversibly inhibited were measured for three shortgrass prairie species. The experimental taxa include, a cool season species (Agropyron smithii), a warm season species (Bouteloua gracilis), and a species which grows throughout the cool and warm seasons (Carex stenophylla). Agropyron smithii exhibited lower high temperature damage thresholds (43°C in cool grown plants, 46°C in warm grown plants), relative to the other two species. Bouteloua gracilis exhibited the highest tolerance to high temperature, with threshold values being 44–49°C for cool grown plants and 53–55°C for warm grown plants. Carex stenophylla exhibited threshold values which were intermediate to the other two species (43–47°C for cool grown plants, and 51–53°C for warm grown plants). Seasonal patterns in the fluorescence rise temperatures of field grown plants indicated acclimation to increased temperatures in all three species. The results demonstrate a correlation between the high temperature thresholds for damage to the photosynthetic apparatus, and in situ seasonal phenology patterns for the three species.  相似文献   

14.
Megachile rotundata (Hymenoptera: Megachilidae), the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the insects' development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the tolerance of pupae to low temperatures. Carbon dioxide emission rates were compared between four different FTRs, all with a base temperature of 6 °C and a daily high-temperature pulse. Four different high-temperature pulses were examined, 15 or 25 °C for 2 h and 20 °C for 1 or 2 h. A subset of pupae at the FTR base temperature of 6 °C exhibited continuous gas exchange and, once ramped to 20 or 25 °C, shifted to cyclic gas exchange. As temperatures were ramped down from the high-temperature pulse to 6 °C, the pupae reverted to continuous gas exchange. The following conclusions about the effect of FTR on the CO2 emissions of M. rotundata pupae exposed to low-temperature storage during the spring incubation were reached: 1) the high temperature component of the FTR was the best predictor of respiratory pattern; 2) neither pupal body mass nor days in FTR significantly affected which respiratory pattern was expressed during FTRs; 3) cyclic gas exchange was induced only in pupae exposed to temperatures greater than 15 °C during the FTR high temperature pulse; and 4) a two hour pulse at 25 °C doubled the number of CO2 peaks observed during the FTR pulse as compared to a two hour pulse at 20 °C.  相似文献   

15.
Walker, D. I. and Cambridge, M. L. 1994. An experimental assessment of the temperature responses of two sympatric seagrasses, Amphibolis antarctica and Amphibolis griffithii, in relation to their biogeography.Seedlings of the viviparous seagrasses, Amphibolis antarctica (Labill.) Sonder & Aschers. and Amphibolis griffithii (Black) den Hartog, were grown in seawater cultures at temperatures of 10–30 °C. This temperature range exceeded the range of temperatures occurring in habitats where Amphibolis grows.All seedlings of both species survived at 15 °C, and all A. antarctica at 10 and 20 °C. There was some mortality at 25 °C, but more in A. griffithii than in A. antarctica. All seedlings showed marked senescence at 30 °C within 2 weeks, and all seedlings of both species were dead at this temperature in 6 weeks. Leaf production rates were different at different temperatures for each species, but were high across the 15–25 °C temperature range for both species. Given the time of release of seedlings from parent plants (winter), these results are consistent with the observed distribution of adult plants, and so the more restricted range of A. griffithii can be explained partially by its' response to temperature in culture. These results do not explain the absence of both Amphibolis species from the east coast of Australia, which may be a consequence of habitat availability.  相似文献   

16.
Summary The subdominant CAM species, Echinocereus viridiflorus and Mammillaria vivipara, collected from the shortgrass prairie in northeastern Colorado were pretreated and analyzed for gas exchange under cool temperatures (20/15°C) and warm temperatures (35/15°C). Well watered plants of both species under a 35/15°C thermoperiod fixed atmospheric CO2 during the night and early moring. Echinocereus viridiflorus grown and analyzed at 20/15°C fixed CO2 during the night, early morning and late afternoon but total carbon gain over a 24 h period is less than when grown and analyzed under the 35/15°C thermoperiod. Mammillaria vivipara grown and analyzed at 20/15°C assimilates CO2 at low rates during all parts of a 24 h period with the greatest CO2 fixation rates occuring from midday to late afternoon. The total carbon gain under the 20/15°C thermoperiod is less than that for this species under the 35/15°C thermoperiod. Decreasing the night temperature of plants grown under the warm conditions to 10°C or 5°C results in a depression of the night CO2 fixation in both species. E. viridiflorus from the cool growth conditions showed an enhancement of the CO2 uptake during the night, early morning and late afternoon when subjected to the cooler night temperatures (10°C and 5°C). The CO2 uptake of M. vivipara grown at 20/15°C shows an enhancement during the night and early morning while the CO2 fixation during midday and late afternoon is slightly depressed under cool night temperatures (10° and 5°C). Under the 35/15°C thermoperiod both species exhibit depressed rates of CO2 fixation during the night and early morning when water stressed. Plants of both species grown under the 20/15°C thermoperiod exhibit no net CO2 fixation following five weeks of water deprivation. Upon rewatering, E. viridiflorus begins to recover its capacity for CO2 fixation within 24 h under both the warm and cool temperature regimes. However, M. vivipara did not show recovery within 48 h following rewatering under the warm or cool temperature regime. Contrasting the patterns of gas exchange of the subdominant species, E. viridiflorus and M. vivipara, with a dominant CAM species of the shortgrass prairie, Opuntia polyacantha reveals significant differences that may well dictate the role of these species in this ecosystem. E. viridiflorus and M. vivipara have a lower capacity of carbon gain and recovery from water stress than O. polyacantha mainly due to their lack of late afternoon CO2 uptake. This study suggests that carbon gain plays an important role in limiting E. viridiflorus and M. vivipara in the shortgrass prairie ecosystem.  相似文献   

17.
Summary The influence of light intensity and temperature on the diurnal course and magnitude of CO2 gas exchange and on acid metabolism was studied in the laboratory with rooted rosettes of Sempervivum montanum collected at 2,200 m above sea level in the Central Alps. Under a temperature regime having a cool dark period and warm light period, S. montanum exhibited the time course of CO2 gas exchange typical of a CAM plant; the response was very distinct even when the plants were well-watered. At day temperatures of less than 10° C and at night temperatures greater than 35° C, S. montanum behaved like a C3 plant. Characteristic for S. montanum are a broad temperature optimum and a wide range of temperatures in which CO2 uptake in light is possible (-2° to 45° C). Dark fixation of CO2 is evident between-2° and 35° C, an apparent uptake of external CO2, on the other hand, only as high as 20° C. Light saturation of CO2 uptake is reached at 60–80 W m-2 while the rate of deacidification is nearly maximal at 40 W m-2. These results show that, due to their specific metabolism, CAM plants can be favored not only in xeric habitats, but also in heat stressed mountain habitats where the daily variation in temperature may be extreme.Dedicated with appreciation to Dr. K.F. Springer  相似文献   

18.
CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to light and temperature. Generally, the stomatal conductance was highest at 20°C.The study reveals that all these species can easily be cultivated at relatively lower altitudes. However, proper agronomical methodology will need to be developed for better yields.  相似文献   

19.
Bunce  J 《Journal of experimental botany》1998,49(326):1555-1561
The temperature dependencies of the solubility of carbon dioxide and oxygen in water and the temperature dependency of the kinetic characteristics of the ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) enzyme result in the short-term stimulation of photosynthesis with a doubling of carbon dioxide from 350 to 700 mol mol-1 usually decreasing from about 90% at 30C to about 25% at 10C at high photon flux. In field-grown wheat and barley, the expected values at 30°C were observed, but also values as high as 60% at 10°C. The much larger than expected stimulation at cool temperatures in these species also occurred in plants grown at 15°C, but not at 23°C in controlled environment chambers. Gas exchange analysis indicated that an unusually high diffusive limitation was not an explanation for the large response. Assessment of the apparent in vivo specificity of Rubisco by determining the carbon dioxide concentration at which carboxylation equalled carbon dioxide release from oxygenation, indicated that growth at low temperatures altered the apparent enzyme specificity in these species compared to these species grown at the warmer temperature. Inserting the observed specificities into a biochemical model of photosynthesis indicated that altered Rubisco specificity was consistent with the observed rates of assimilation. Whether altered apparent Rubisco specificity is caused by altered stoichiometry of photorespiration or an actual change in enzyme specificity, the results indicate that the temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide may vary greatly with species and with prior exposure to low temperature.Keywords: Barley, carbon dioxide, photosynthesis, temperature, wheat.   相似文献   

20.
The effect of temperatureon conidial germination, mycelial growth, andsusceptibility of adults of three tephritidfruit flies, Ceratitis capitata(Wiedemann), C. fasciventris (Bezzi) andC. cosyra (Walker) to six isolatesof Metarhizium anisopliae were studied inthe laboratory. There were significantdifferences among the isolates in the effect oftemperature on both germination and growth.Over 80% of conidia germinated at 20, 25 and30°C, while between 26 and 67% conidiagerminated at 35°C and less than 10% at15°C within 24 hours. Radial growth was slowat 15°C and 35°C with all of theisolates. The optimum temperature forgermination and mycelial growth was 25°C. Mortality caused by the six fungal isolatesagainst the three fruit fly species varied withtemperature, isolate, and fruit fly species.Fungal isolates were more effective at 25, 30and 35°C than at 20°C. The LT90values decreased with increasing temperature upto the optimum temperature of 30°C. Therewere significant differences in susceptibilitybetween fly species to fungal infection at allthe temperatures tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号