首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery from acute renal failure (ARF) requires the replacement of injured cells with new cells that restore tubule epithelial integrity. We described recently the expression of a wide range of nephrogenic proteins in tubular cells after ARF induced by ischemia-reperfusion (I/R) (Villanueva S, Cespedes C, and Vio CP. Am J Physiol Regul Integr Comp Physiol 290: R861-R870, 2006). These markers, namely, Vimentin, neural cell adhesion molecules (Ncam), basic fibroblast growth factor (bFGF), paired homeobox-2 (Pax-2), bone morphogene protein-7 (BMP-7), Noggin, Lim-1, Engrailed, Smad, phospho-Smad, hypoxia-induced factor-1alpha (HIF-1alpha), VEGF, and Tie-2, are expressed in a time frame similar to that observed in normal kidney development. bFGF participates in early kidney development as a morphogen involved in mesenchyme/epithelial transition, and it is reexpressed in the recovery phase of ARF. To test the hypothesis that bFGF can accelerate the regeneration after renal damage, we used recombinant bFGF and studied the expression pattern of the above described morphogens in ARF. Male Sprague-Dawley rats were subjected to 30 min of renal ischemic injury and were injected with bFGF 30 microg/kg followed by reperfusion. Rats were killed and the expression of nephrogenic proteins were analyzed by immunohistochemistry and Western blot analysis. In the animals subjected to I/R treated with bFGF, we observed a 12- to 24-h earlier and more abundant reexpression of the proteins Ncam, bFGF, Pax-2, BMP-7, Noggin, Lim-1, Engrailed, VEGF, and Tie-2 than the I/R untreated rats. In addition, we observed a reduction in renal damage markers ED-1 and alpha-smooth muscle actin. These results indicate that bFGF can participate in the regeneration process and suggest that the treatment with bFGF can induce an earlier regeneration process after ischemic acute renal failure.  相似文献   

2.
Recovery from acute renal failure (ARF) requires the replacement of injured cells by new cells that are able to restore tubule epithelial integrity. We have recently described the expression of nephrogenic proteins [Vimentin, neural cell adhesion molecule, basic fibroblast growth factor (bFGF), Pax-2, bone morphogen protein-7, Noggin, Smad 1-5-8, p-Smad, hypoxia-inducible factor-1alpha, vascular endothelial growth factor], in a time frame similar to that observed in kidney development, after ischemic ARF induced in an ischemia-reperfusion (I/R) model. Furthermore, we show that bFGF, a morphogen involved in mesenchyme/epithelial transition in kidney development, induces a reexpression of morphogenic proteins in an earlier time frame and accelerates the recovery process after renal damage. Herein, we confirm that renal morphogenes are modulated by bFGF and hypothesized that a decrease in bFGF receptor 2 (bFGFR2) levels by the use of antisense oligonucleotides diminishes the expression of morphogenes. Male Sprague-Dawley rats submitted to ischemic injury were injected with 112 microg/kg bFGFR2 antisense oligonucleotide (bFGFR2-ASO) followed by reperfusion. Rats were killed, and the expression of nephrogenic proteins and renal marker damage was analyzed by immunohistochemistry and immunoblot. Animals subjected to I/R treated with bFGFR2-ASO showed a significant reduction in morphogen levels (P < 0.05). In addition, we observed an increase in markers of renal damage: macrophages (ED-1) and interstitial alpha-smooth muscle actin. These results confirm that bFGF participates in the recovery process and that treatment with bFGFR2-ASO induces an altered expression of morphogen proteins.  相似文献   

3.
Acute renal failure (ARF) can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2) in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF) or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO) after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.  相似文献   

4.
Fetal kidney cells may contain multiple populations of kidney stem cells and thus appear to be a suitable cellular therapy for the treatment of acute renal failure (ARF) but their biological characteristics and therapeutic potential have not been adequately explored. We have culture expanded fetal kidney cells derived from rat fetal kidneys, characterized them and evaluated their therapeutic effect in an ischemia reperfusion (IR) induced rat model of ARF. The fetal kidney cells grew in culture as adherent spindle shaped/polygonal cells and expressed CD29, CD44, CD73, CD90, CD105, CD24 and CD133 markers. Administration of PKH26 labeled fetal kidney cells in ARF rats resulted in a significant decrease in the levels of blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin and decreased tubular necrosis in the kidney tissues (p<0.05 for all). The injected fetal kidney cells were observed to engraft around injured tubular cells, and there was increased proliferation and decreased apoptosis of tubular cells in the kidneys (p<0.05 for both). In addition, the kidney tissues of ARF rats treated with fetal kidney cells had a higher gene expression of renotropic growth factors (VEGF-A, IGF-1, BMP-7 and bFGF) and anti-inflammatory cytokine (IL10); up regulation of anti-oxidative markers (HO-1 and NQO-1); and a lower Bax/Bcl2 ratio as compared to saline treated rats (p<0.05 for all). Our data shows that culture expanded fetal kidney cells express mesenchymal and renal progenitor markers, and ameliorate ischemic ARF predominantly by their anti-apoptotic, anti-inflammatory and anti-oxidative effects.  相似文献   

5.
Although renal regeneration is limited to repair of the proximal tubule in mammals, some bony fish are capable of renal regeneration through nephron neogenesis in the event of renal injury. We previously reported that nephron development in the medaka mesonephros is characterized by four histologically distinct stages, generally referred to as condensed mesenchyme, nephrogenic body, relatively small nephron, and the mature nephron. Developing nephrons are positive for wt1 expression during the first three of these stages. In the present study, we examined the regenerative response to renal injury, artificially induced by the administration of sublethal amounts of gentamicin in adult medaka. Similar to previous reports in other animals, the renal tubular epithelium and the glomerulus of the medaka kidney exhibited severe damage after exposure to this agent. However, kidneys showed substantial recovery after gentamicin administration, and a significant number of developing nephrons appeared 14 days after gentamicin administration (P < 0.01). Similarly, the expression of wt1 in developing nephrons also indicated the early stages of nephrogenesis. These findings show that medaka has the ability to regenerate kidney through nephron neogenesis during adulthood and that wt1 is a suitable marker for detecting nephrogenesis.  相似文献   

6.
Pax2 has been identified as a key regulatory protein associated with renal developmental malformations. The purpose of this study was to determine whether Pax2 protein expression, and that of other proteins important for normal renal development, is abnormally distributed in the prenatal kidney of the Brachyrrhine (Br) mouse that displays heritable renal hypoplasia. Embryonic 3H1 +/+ and Br/Br mice were collected between E11.0 and E18.0. Routine light microscopy and immunohistochemical analysis using antibodies to Pax2, E-cadherin, fibronectin, laminin, and Type IV collagen were applied to sequential tissue sections. E-cadherin stained consistently in the renal tubules of both normal and mutant animals. Whereas the initial expression of Pax2 corresponded between normal and mutant kidneys, it became progressively limited to the nephrogenic zone in +/+ animals, while distributing erratically in the Br/Br kidney. Fibronectin was not expressed in the normal nephrogenic zone but remained abundantly distributed throughout the Br/Br kidney. Luminin and Type IV collagen staining revealed a deficiency in renal vasculature formation in Br/Br kidneys. Results suggest that initial morphological differentiation occurs normally in the Br kidney but that subsequent nephric formation is associated with abnormal distribution of Pax2 and ECM proteins. (J Histochem Cytochem 49:1081-1097, 2001)  相似文献   

7.
To investigate regional aspects of hypoxic regulation of adrenomedullin (AM) in kidneys, we mapped the distribution of AM in the rat kidney after hypoxia (normobaric hypoxic hypoxia, carbon monoxide, and CoCl(2) for 6 h), anemia (hematocrit lowered by bleeding) and after global transient ischemia for 1 h (unilateral renal artery occlusion and reperfusion for 6 and 24 h) and segmental infarct (6 and 24 h). AM expression and localization was determined in normal human kidneys and in kidneys with arterial stenosis. Hypoxia stimulated AM mRNA expression significantly in rat inner medulla (CO 13 times, 8% O(2) 6 times, and CoCl(2) 8 times), followed by the outer medulla and cortex. AM mRNA level was significantly elevated in response to anemia and occlusion-reperfusion. Immunoreactive AM was associated with the thin limbs of Henle's loop, distal convoluted tubule, collecting ducts, papilla surface epithelium, and urothelium. AM labeling was prominent in the inner medulla after CO and in the outer medulla after occlusion-reperfusion. The infarct border zone was strongly labeled for AM. In cultured inner medullary collecting duct cells, AM mRNA was significantly increased by hypoxia. AM mRNA was equally distributed in human kidney and AM was localized as in the rat kidney. In human kidneys with artery stenosis, AM mRNA was not significantly enhanced compared with controls, but AM immunoreactivity was observed in tubules, vessels, and glomerular cells. In summary, AM expression was increased in the rat kidney in response to hypoxic and ischemic hypoxia in keeping with oxygen gradients. AM was widely distributed in the human kidney with arterial stenosis. AM may play a significant role to counteract hypoxia in the kidney.  相似文献   

8.
The fish kidney provides a unique model for investigating renal injury, repair, and development. Like mammalian kidneys, fish kidneys have the remarkable ability to repair injured nephrons, designated renal regeneration. This response is marked by a recovery from acute renal failure by replacing the injured cells with new epithelial cells, restoring tubule integrity. In addition, fish have the ability to respond to renal injury by de novo nephron neogenesis. This response occurs in multiple fish species including goldfish, zebrafish, catfish, trout, tilapia, and the aglomerular toadfish. New nephrons develop in the weeks after the initial injury. This nephrogenic response can be induced in adult fish, providing a more abundant source of developing renal tissue compared with fetal mammalian kidneys. Investigating the roles played by different parts of the nephron during development and repair can be facilitated using fish models with differing renal anatomy, such as aglomerular fish. The fish nephron neogenesis model may also help to identify novel genes involved in nephrogenesis, information that could eventually be used to develop alternative renal replacement therapies.  相似文献   

9.
The molecular mechanisms that lead to tubular atrophy, capillary loss, and fibrosis following acute kidney injury are not very clear but may involve cell cycle inhibition by increased expression of cyclin kinase inhibitors. The INK4a/ARF locus encodes overlapping genes for two proteins, a cyclin kinase inhibitor, p16(INK4a), and a p53 stabilizer, p19(ARF), from independent promoters. To determine if decreased INK4a gene expression results in improved kidney regeneration, INK4a knockout (KO) and wild-type (WT) mice were subjected to ischemia-reperfusion injury (IRI). p16(INK4a) and p19(ARF) levels were increased markedly in WT mice at 1-28 days after injury. Kidneys were examined to determine the localization and levels of p16(INK4a), apoptosis, cell proliferation, and capillary rarefaction. KO mice displayed decreased tubular cell apoptosis, increased cell proliferation, and lower creatinine levels after injury. KO mice had significantly higher capillary density compared with WT mice at 14-42 days after IRI. Plasma granulocyte colony-stimulating factor (G-CSF) increased after ischemia in both WT and KO mice and was elevated markedly in KO compared with WT mice. KO kidney digests contained higher counts of Gr-1(+)/Cd11b(+) myeloid cells by flow cytometry. KO mice treated with a Gr-1-depleting antibody displayed reduced vascular endothelial growth factor mRNA, plasma G-CSF, and capillary density, and an increase in serum creatinine and medullary myofibroblasts, compared with untreated KO mice 14 days after ischemia. The anti-angiogenic effect of Gr-1 depletion in KO mice was confirmed by Matrigel angiogenesis assays. These results suggest that the absence of p16(INK4a) and p19(ARF) following IRI has a protective effect on the kidney through improved epithelial and microvascular repair, in part by enhancing the mobilization of myeloid cells into the kidney.  相似文献   

10.
Ischemic acute renal failure (ARF) is a highly complex disorder involving renal vasoconstriction, filtration failure, tubular obstruction, tubular backleak and generation of reactive oxygen species. Due to this complexity, the aim of our study was to explore effects of Angiotensin II type 1 receptor (AT1R) blockade on kidney structure and function, as well as oxidative stress in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. Experiments were performed on anaesthetized adult male SHR in the model of ARF with 40 minutes clamping the left renal artery. The right kidney was removed and 40 minutes renal ischemia was performed. Experimental groups received AT1R antagonist (Losartan) or vehicle (saline) in the femoral vein 5 minutes before, during and 175 minutes after the period of ischemia. Biochemical parameters were measured and kidney specimens were collected 24h after reperfusion. ARF significantly decreased creatinine and urea clearance, increased LDL and lipid peroxidation in plasma. Treatment with losartan induced a significant increase of creatinine and urea clearance, as well as HDL. Lipid peroxidation in plasma was decreased and catalase enzyme activity in erythrocytes was increased after losartan treatment. Losartan reduced cortico-medullary necrosis and tubular dilatation in the kidney. High expression of pro-apoptotic Bax protein in the injured kidney was downregulated after losartan treatment. Our results reveal that angiotensin II (via AT1R) mediates the most postischemic injuries in hypertensive kidney through oxidative stress enhancement. Therefore, blockade of AT1R may have beneficial effects in hypertensive patients who have developed ARF.  相似文献   

11.
BackgroundThe prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secreted by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI.MethodsWe used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ETA, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2′-deoxyguanosine, F4/80 and PCNA, respectively.ResultsIRI induced kidney failure and increased ET-1 and ETA receptor expression. This was accompanied by tubular injury, wall thickening and reduction of lumen area/wall area ratio of small renal arteries, increased oxidative stress and inflammation. These parameters were attenuated in VEETKO mice.ConclusionOur results suggest that suppression of ET-1 from the endothelial cells attenuates IRI kidney injury. Blocking ET-1 effects may represent a therapeutic strategy in the management of AKI.  相似文献   

12.
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase involved in regulating a wide range of biologic processes, such as apoptosis, cell proliferation, and tissue remodeling. However, the role of MMP-10 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we show that MMP-10 was upregulated in the kidneys and predominantly localized in the tubular epithelium in various models of AKI induced by ischemia/reperfusion (IR) or cisplatin. Overexpression of exogenous MMP-10 ameliorated AKI, manifested by decreased serum creatinine, blood urea nitrogen, tubular injury and apoptosis, and increased tubular regeneration. Conversely, knockdown of endogenous MMP-10 expression aggravated kidney injury. Interestingly, alleviation of AKI by MMP-10 in vivo was associated with the activation of epidermal growth factor receptor (EGFR) and its downstream AKT and extracellular signal-regulated kinase-1 and 2 (ERK1/2) signaling. Blockade of EGFR signaling by erlotinib abolished the MMP-10-mediated renal protection after AKI. In vitro, MMP-10 potentiated EGFR activation and protected kidney tubular cells against apoptosis induced by hypoxia/reoxygenation or cisplatin. MMP-10 was colocalized with heparin-binding EGF-like growth factor (HB-EGF) in vivo and activated it by a process of proteolytical cleavage in vitro. These studies identify HB-EGF as a previously unrecognized substrate of MMP-10. Our findings also underscore that MMP-10 can protect against AKI by augmenting EGFR signaling, leading to promotion of tubular cell survival and proliferation after injury.Subject terms: Apoptosis, Cell growth  相似文献   

13.
14.
Perinatal hypoxia/ischemia (HI) is a common cause of neurological deficits in children. Our goal was to elucidate the underlying mechanisms that contribute to the neurological sequelae of HI-induced brain injury. HI was induced by permanent ligation of the left carotid artery followed by 90 min of hypoxia (7.8% O2) in female P7 rats. A two-dimensional differential proteome analysis was used to assess changes in protein expression in cortex 2 h after HI. In total, 17 proteins reflecting a 2-fold or higher perturbation of expression after HI as compared to sham-treated pups were identified by mass spectrometry. Of the altered proteins, 14-3-3epsilon and TUC-2, both playing an important role in the development of the central nervous system, decrease after HI, consistent with an early disturbance of cortical development. Also affected, DARPP-32 and alpha-synuclein, two proteins important for dopamine neurotransmission, increased more than 2-fold 2 h after HI injury. The differential expression of these proteins was validated by individual Western blot assays. The expression of several metabolic enzymes and translational factors was also perturbed early after HI brain injury. These findings provide initial insights into the mechanisms underlying neurodegenerative events after HI and may allow for the rational design of therapeutic strategies that enhance neuronal adaptation and compensation after HI.  相似文献   

15.
Kidneys of newborn (but not adult) mice are normally high permissive for polyomavirus (Py) infection and readily establish persistent infections. We have proposed that ongoing cellular differentiation, which occurs in newborn mice, may be necessary for a high level of in vivo Py replication (R. Rochford, J. P. Moreno, M. L. Peake, and L. P. Villarreal, J. Virol. 66:3287-3297, 1992). This cellular differentiation requirement may also be necessary for the reactivation of a persistent Py kidney infection and could provide an alternative to the accepted view that reactivation results from immunosuppression. To examine this proposal, the ability of adult BALB/c mouse kidneys to support primary acute Py infection or to reactivate previously established persistent Py infections after kidney-specific damage was investigated. Kidney damage was induced by both chemical (glycerol, cisplatin, or methotrexate) and mechanical (through renal artery clamping to produce unilateral renal ischemia) treatments. We also examined the effects of epidermal growth factor (EGF), which enhances the rate of kidney regeneration, on Py replication. Using histopathologic techniques, in situ hybridization for Py DNA, and immunofluorescence for Py VP1 production, we established that both chemical damage and damage through renal artery clamping of adult kidneys promoted high levels of primary Py replication in these normally nonpermissive cells. This damage also promoted the efficient reactivation of Py replication from persistently infected kidneys, in the absence of immunosuppression. EGF treatment significantly increased acute Py replication and also reactivation in damaged kidneys. These results support the view that ongoing cellular division and differentiation may be needed both for high levels of acute Py replication and for reactivation of persistent infections in vivo.  相似文献   

16.
Bacterial endotoxin (LPS) is responsible for much of the widespread inflammatory response seen in sepsis, a condition often accompanied by acute renal failure (ARF). In this work we report that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced renal failure. Compared with TNFR1(+/+) controls, TNFR1(-/-) mice had less apoptosis in renal cells and fewer neutrophils infiltrating the kidney following LPS administration, supporting these as mediators of ARF. TNFR1(+/+) kidneys transplanted into TNFR1(-/-) mice sustained severe ARF after LPS injection, which was not the case with TNFR1(-/-) kidneys transplanted into TNFR1(+/+) mice. Therefore, TNF is a key mediator of LPS-induced ARF, acting through its receptor TNFR1 in the kidney.  相似文献   

17.
The effect of ischemia induced acute renal failure (ARF) on the transport of phosphate (Pi) after early (15-30 min) and prolonged (60 min) ischemia in the brush border membrane vesicles (BBMV) from rat renal cortex was studied. Sodium-dependent transport of Pi declined significantly and progressively due to ischemia. Western blot analysis of BBM from ischemic rats showed decreased expression of NaPi-2. A compensatory increase was observed in Pi uptake in BBMV from contralateral kidneys. There was no significant difference in NaPi-2 expression between BBMV from sham and contralateral kidneys. Early blood reperfusion for 15 min after 30 min ischemia caused further decline in Pi uptake. Prolonged reperfusion for 120 min caused partial reversal of transport activities in 30-min ischemic rats. However, no improvement in the transport of Pi was observed in 60-min ischemic rats after 120 min of blood reperfusion. Kinetic studies showed that the effect of ischemia and blood reperfusion was dependent on the Vmax of the Na-Pi transporter. Western blot analysis showed increased expression of NaPi-2 in the BBMs from ischemia-reperfusion animals. Further, a shift in the association of Na ions to transport one molecule of Pi was observed under different extracellular Na concentrations [Na]o. Feeding rats with low Pi diet and/or treatment with thyroid hormone (T3) prior to ischemia resulted in increased basal Pi transport. Ischemia caused similar decline in Pi transport in BBM from LPD and/or T3 animals. However, recovery in these animals was faster than the normal Pi diet fed (NPD) animals. The study suggests a change in the intrinsic properties of the Na-Pi transporter in rat kidneys due to ischemia. The study also indicates that treatment with T3 and feeding LPD prior to ischemia caused faster recovery of phosphate uptake due to ischemia-reperfusion injury.  相似文献   

18.
Erythrocyte structure was studied in rat after uranyl nitrate (UN:5 mg/kg) intoxication. The study of pathogenic progression of UN induced renal failure (ARF) was confined to the early initiation phase (2 hr), late initiation phase (8 hr) and the maintenance phase (24 hr). Erythrocyte structure has been found to be greatly influenced. The UN induced hemolytic syndrome/hypoxia was accompanied by a marked anisocytosis and poikilocytosis during different phases of ARF, which is characteristic of UN poisoning. Subsequent alterations in erythrocyte structure followed by UN administration or during the pathogenic progression of ARF has clinical and diagnostic importance as the alterations were much distinct prior to the clinical manifestation of ARF even at light microscopic level.  相似文献   

19.
Reactive oxygen species (ROS) are likely candidates for involvement in ischemia/reperfusion-induced acute renal failure (ARF). In this study, the issue of whether superoxide dismutase (SOD1)-deficiency exacerbates the ischemia/reperfusion-induced ARF was examined. At two weeks after a right nephrectomy of mice, the left renal vessels were clipped to induce renal ischemia and were then released after 45 min. The severe renal damage observed at one day was partially recovered at seven days after the induction of ischemia. SOD1- / -  mice suffer from severe ARF compared with SOD1+/ -  and SOD1+/+ mice. The damage was more evident in aged animals (24-28 week old) than younger ones (10-12 week old). The expression of major antioxidative and redox enzymes, except for CuZnSOD, were substantially unchanged. Thus, the increased ARF in SOD1- / -  mice appears to be mainly attributable to a deficiency in CuZnSOD. These data support the view that ROS are exacerbating factors in ischemia/reperfusion-induced ARF.  相似文献   

20.
Reactive oxygen species (ROS) are likely candidates for involvement in ischemia/reperfusion-induced acute renal failure (ARF). In this study, the issue of whether superoxide dismutase (SOD1)-deficiency exacerbates the ischemia/reperfusion-induced ARF was examined. At two weeks after a right nephrectomy of mice, the left renal vessels were clipped to induce renal ischemia and were then released after 45 min. The severe renal damage observed at one day was partially recovered at seven days after the induction of ischemia. SOD1? / ? mice suffer from severe ARF compared with SOD1+/ ? and SOD1+/+ mice. The damage was more evident in aged animals (24–28 week old) than younger ones (10–12 week old). The expression of major antioxidative and redox enzymes, except for CuZnSOD, were substantially unchanged. Thus, the increased ARF in SOD1? / ? mice appears to be mainly attributable to a deficiency in CuZnSOD. These data support the view that ROS are exacerbating factors in ischemia/reperfusion-induced ARF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号