首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum- and glucocorticoid-inducible kinase (SGK) 1 and SGK3 share the ability to upregulate several ion channels, including the epithelial Na(+) channel. Whereas SGK1 is under genomic control of mineralocorticoids and glucocorticoids, SGK3 is constitutively expressed. The SKG1-knockout (sgk1(-/-)) mouse is seemingly normal when it is fed a standard diet, but its ability to retain NaCl is impaired when it is fed a salt-deficient diet. In the SGK3-knockout (sgk3(-/-)) mouse fed standard and salt-deficient diets, hair growth is strikingly delayed but NaCl excretion is normal. Thus the possibility was considered that SGK1 and SGK3 could mutually replace each other, thus preventing severe NaCl loss in sgk1(-/-) and sgk3(-/-) mice. We crossed SGK1- and SGK3-knockout mice and compared renal electrolyte excretion of the double mutants (sgk1(-/-)/sgk3(-/-)) with that of their wild-type littermates (sgk1(+/+)/sgk3(+/+)). Similar to sgk3(-/-) mice, the sgk1(-/-)/sgk3(-/-) mice display delayed hair growth. Blood pressure was slightly, but significantly (P < 0.03), lower in sgk1(-/-)/sgk3(-/-) (102 +/- 4 mmHg) than in sgk1(+/+)/sgk3(+/+) (114 +/- 3 mmHg) mice, a difference that was maintained in mice fed low- and high-salt diets. Plasma aldosterone concentrations were significantly (P < 0.01) higher in sgk1(-/-)/sgk3(-/-) than in sgk1(+/+)sgk3(+/+) mice fed control (511 +/- 143 vs. 143 +/- 32 pg/ml) and low-salt (1,325 +/- 199 vs. 362 +/- 145 pg/ml) diets. During salt depletion, absolute and fractional excretions of Na(+) were significantly (P < 0.01) higher in sgk1(-/-)/sgk3(-/-) (1.2 +/- 0.2 micromol/24 h g body wt, 0.12 +/- 0.03%) than in sgk1(+/+)/sgk3(+/+) (0.4 +/- 0.1 micromol/24 h g body wt, 0.04 +/- 0.01%) mice. The sgk1(-/-)/sgk3(-/-) mice share the delayed hair growth with sgk3(-/-) mice and the modestly impaired renal salt retention with sgk1(-/-) mice. Additional lack of the isoform kinase does not substantially compound the phenotype for either property.  相似文献   

2.
Mineralocorticoids modify salt balance by both stimulating salt intake and inhibiting salt loss. Renal salt retention is accomplished by upregulation of reabsorption, an effect partially mediated by serum- and glucocorticoid-inducible kinase 1 (SGK1). The present study explored the contribution of SGK1 to the regulation of renal function, salt intake, and blood pressure during mineralocorticoid excess. DOCA/1% NaCl treatment increased blood pressure and creatinine clearance to a similar extent in SGK1-deficient sgk1(-/-) and wild-type sgk1(+/+) mice but led to more pronounced increase of proteinuria in sgk1(+/+) mice (by 474 +/- 89%) than in sgk1(-/-) mice (by 154 +/- 31%). DOCA/1% NaCl treatment led to significant increase of kidney weight (by 24%) and to hypokalemia (from 3.9 +/- 0.1 to 2.7 +/- 0.1 mmol/l) only in sgk1(+/+) mice. The treatment enhanced renal Na(+) excretion significantly more in sgk1(+/+) mice (from 3 +/- 1 to 134 +/- 32 micromol.24 h(-1).g body wt(-1)) than in sgk1(-/-) mice (from 4 +/- 1 to 49 +/- 8 micromol.24 h(-1).g body wt(-1)), pointing to SGK1-dependent stimulation of salt intake. With access to two drinking bottles containing 1% NaCl or water, DOCA treatment did not significantly affect water intake in either genotype but increased 1% NaCl intake in sgk1(+/+) mice (within 9 days from 3.5 +/- 0.9 to 16.5 +/- 2.4 ml/day) consistent with DOCA-induced salt appetite. This response was significantly attenuated in sgk1(-/-) mice (from 2.6 +/- 0.6 to 5.9 +/- 0.9 ml/day). Thus SGK1 contributes to the stimulation of salt intake, kidney growth, proteinuria, and renal K(+) excretion during mineralocorticoid excess.  相似文献   

3.
Maternal stress and malnutrition modify intrauterine fetal development with impact on postnatal blood pressure, nutrient, water, and electrolyte metabolism. The present study explored the possible involvement of maternal serum- and glucocorticoid-inducible kinase (SGK)-1 in fetal programming of blood pressure. To this end, wild-type (sgk1(+/+)) male mice were mated with SGK1 knockout (sgk1(-/-)) female mice, and sgk1(-/-) males with sgk1(+/+) females, resulting in both cases in heterozygotic (sgk1(-/+)) offspring. Following prenatal protein restriction, the offspring of sgk1(+/+) mothers gained weight significantly slower and had significantly higher blood pressure after birth. Moreover, a sexual dimorphism was apparent in fasting blood glucose and plasma corticosterone concentrations, with higher levels in female offspring. In contrast, prenatal protein restriction of sgk1(-/-) mothers had no significant effect on postnatal weight gain, blood pressure, plasma glucose concentration, or corticosterone levels, irrespective of offspring sex. Plasma aldosterone concentration, urinary flow rates, and urinary excretions of Na(+) and K(+) were not significantly modified by either maternal genotype or nutritional manipulation. In conclusion, maternal signals mediated by SGK1 may play a decisive role in fetal programming of hypertension induced by prenatal protein restriction.  相似文献   

4.
5.
The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Interestingly, however, water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared with that of (+/+) mice. Subsequent to 20-h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit, and higher relative weight loss compared with (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone, and aldosterone between mice of the two genotypes. After water deprivation, renal medullary interstitial fluid osmolality and concentrations of Na(+), K(+), and urea did not differ between genotypes and cAMP excretion was similar. Renal aquaporin-1 (AQP1), -2, and -4 protein abundances did not differ between water-deprived (+/+) and ACBP(-/-) mice; however, ACBP(-/-) mice displayed increased apical targeting of pS256-AQP2. AQP3 abundance was lower in ACBP(-/-) mice than in (+/+) control animals. Thus we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3, leading to impaired efflux over the basolateral membrane of the collecting duct.  相似文献   

6.
Coexpression of the serum and glucocorticoid inducible kinase 1 (SGK1) up-regulates Kv channel activity in Xenopus oocytes and human embryonic kidney cells. To investigate the physiological impact of SGK1 dependent Kv channel regulation, we recorded whole-cell currents in lung fibroblasts from SGK1 knockout mice (sgk1-/-) and wild-type littermates (sgk1+/+). Serum-grown mouse lung fibroblasts (MLF) from both genotypes exhibited voltage-gated outwardly rectifying K(+)-currents with time-dependent activation (tau(act) approximately 3 msec), slow inactivation (tau(inact) approximately 700 msec), use-dependent inactivation, and (partial) inhibition by K(+) channel blockers TEA, 4-AP, and margatoxin. In serum grown MLF peak Kv current density at +100 mV was significantly lower in sgk1-/- (14 +/- 2 pA/pF, n = 13) than in sgk1+/+ (31 +/- 4 pA/pF, n = 16). PCR amplification of different Kv1 and Kv3 subunits from mouse fibroblasts demonstrated the expression of Kv1.1-1.7, Kv3.1, and Kv3.3 mRNA in both sgk1+/+ and sgk1-/- cells. Upon serum deprivation Kv currents almost disappeared in sgk1+/+ (4 +/- 1 pA/pF, n = 11) but not in sgk1-/- (10 +/- 1 pA/pF, n = 6) MLF. Accordingly, following serum deprivation Kv current density was significantly lower in sgk1+/+ than in sgk1-/-. Stimulation of serum-depleted cells with dexamethasone (dex) (1 microM, 1 day), IGF-1 (6.7 microM, 4-6 h) or both, significantly activated Kv currents in sgk1+/+ but not in sgk1-/- MLF. In the presence of both, dex and IGF-1, the Kv current density was significantly larger in sgk1+/+ (27 +/- 3 pA/pF, n = 12) than in sgk1-/- (13 +/- 3 pA/pF, n = 10) cells. Similar to MLF, Kv currents were significantly higher in sgk1+/+ mouse tail fibroblasts (MTF). In sgk1+/+ but not sgk1-/- MTF the Kv currents were inhibited upon serum deprivation and reincreased after stimulation of serum deprived MTF with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h). According to Fura-2-fluorescence capacitative Ca(2+) entry was lower in sgk1-/- MTF compared to sgk1+/+ MTF. Upon serum deprivation capacitative Ca(2+) entry decreased significantly in sgk1+/+ but not in sgk1-/- MTF. Stimulation of depleted cells with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h) reincreased capacitative Ca(2+) entry in sgk1+/+ MTF, whereas in sgk1-/- cells it remained unchanged. In conclusion, lack of SGK1 does not abrogate Kv channel activity but abolishes regulation of those channels by serum, glucocorticoids and IGF-1, an effect influencing capacitative Ca(2+) entry.  相似文献   

7.
8.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

9.
Atrial natriuretic peptide (ANP) is thought to play a role in renal regulation of salt balance by reducing tubular reabsorption of sodium and chloride. Therefore, in the chronic absence of this hormone, a defect of salt excretion should be evident. We used an ANP gene deletion model to test this premise. F2 homozygous mutant mice (-/-) and their wild-type littermates (+/+) were fed an 8% NaCl diet prior to an acute infusion of isotonic saline. Arterial blood pressures, renal excretions of salt and water, as well as collecting duct transport of fluid and electrolytes were measured. Pressures were significantly higher in -/- compared with +/+ mice (139 +/- 4 vs. 101 +/- 2 mmHg; 1 mmHg = 133.3 Pa). There was no difference in glomerular filtration rate (-/- = 0.84 +/- 0.06; +/+ = 0.81 +/- 0.04 mL x min(-1) x g(-1) kidney weight). In the collecting duct, sodium and chloride reabsorptions were significantly higher in the -/- group than in the +/+ group. As a result, natriuresis and chloruresis were relatively reduced (U(Na)V: -/- = 8.6 +/- 1.1; +/+ = 14.0 +/- 1.1; U(Cl)V: -/- = 10.1 +/- 1.4; +/+ = 16.0 +/- 1.1 micromol x min(-1) x g(-1) kidney weight). We conclude that the absence of endogenous ANP activity in mice on a high-salt diet subjected to acute saline infusion causes inappropriately high reabsorption of sodium and chloride in the medullary collecting duct, resulting in a relative defect in renal excretory capacity for salt.  相似文献   

10.
1. The metabolism of K(+), Na(+) and Cl(-) has been investigated in isolated fat-cells prepared from the epididymal adipose tissue of rats. 2. Methods are described for measuring the intracellular water space, the rates of loss of intracellular (42)K(+), (22)Na(+) and (36)Cl(-) and the intracellular concentrations of K(+), Na(+) and Cl(-) in isolated fat-cells. 3. The intracellular water space, measured as the [(3)H]water space minus the [carboxylic acid-(14)C]inulin space, was 3.93+/-0.38mul./100mg. cell dry wt. 4. The first-order rate constants for radioisotope effluxes from isolated fat-cells were 0.029min.(-1) for (42)K(+), 0.245min.(-1) for (22)Na(+) and 0.158min.(-1) for (36)Cl(-). 5. The intracellular concentrations of K(+), Na(+) and Cl(-) were 146m-equiv./l., 18.6+/-2.9m-equiv./l. and 43+/-2.4m-equiv./l. respectively. 6. The total intracellular K(+) content of isolated fat-cells was determined by atomic-absorption spectrophotometry to confirm the value obtained from the radioisotope-efflux data. 7. The ion effluxes from isolated fat-cells were: K(+), 1.5pmoles/cm.(2)/sec., Na(+), 1.6pmoles/cm.(2)/sec., and Cl(-), 2.4pmoles/cm.(2)/sec. 8. The membrane potential of isolated fat-cells calculated from the Cl(-) distribution ratio was -28.7mv.  相似文献   

11.
Although it is well established that the renal endothelin (ET-1) system plays an important role in regulating sodium excretion and blood pressure through activation of renal medullary ET(B) receptors, the role of this system in Dahl salt-sensitive (DS) hypertension is unclear. The purpose of this study was to determine whether the DS rat has abnormalities in the renal medullary endothelin system when maintained on a high sodium intake. The data indicate that Dahl salt-resistant rats (DR) on a high-salt diet had a six-fold higher urinary endothelin excretion than in the DR rats with low Na(+) intake (17.8 ± 4 pg/day vs. 112 ± 44 pg/day). In sharp contrast, urinary endothelin levels increased only twofold in DS rats in response to a high Na(+) intake (13 ± 2 pg/day vs. 29.8 ± 5.5 pg/day). Medullary endothelin concentration in DS rats on a high-Na(+) diet was also significantly lower than DR rats on a high-Na(+) diet (31 ± 2.8 pg/mg vs. 70.9 ± 5 pg/mg). Furthermore, DS rats had a significant reduction in medullary ET(B) receptor expression compared with DR rats while on a high-Na(+) diet. Finally, chronic infusion of ET-1 directly into the renal medulla blunted Dahl salt-sensitive hypertension. These data indicate that a decrease in medullary production of ET-1 in the DS rat could play an important role in the development of salt-sensitive hypertension observed in the DS rat.  相似文献   

12.
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone.  相似文献   

13.
The role of the gastrointestinal tract in maintaining ionic homeostasis during digestion, as well as the relative contribution of the diet for providing electrolytes, has been generally overlooked in many aquatic species. An experimental diet that contained an inert reference marker (lead-glass beads) was used to quantify the net transport of Na(+), K(+), and Cl(-) during the digestion and absorption of a single meal (3% ration) by freshwater rainbow trout (Oncorhynchus mykiss). Secretion of Cl(-) into the stomach peaked at 8 and 12 h following feeding at a rate of 1.1 mmol.kg(-1).h(-1), corresponding to a theoretical pH of 0.6 in the secreted fluid (i.e., 240 mmol/l HCl). The majority ( approximately 90%) of dietary Na(+) and K(+) was absorbed in the stomach, whereas subsequent large fluxes of Na(+) and Cl(-) into the anterior intestine corresponded to a large flux of water previously observed. The estimated concentration of Na(+) in fluids secreted into the anterior intestine was approximately 155 mmol/l, equivalent to reported hepatic bile values, whereas the estimated concentration of Cl(-) ( approximately 285 mmol/l) suggested seepage of HCl acid from the stomach in advance of the chyme front. Net absorption of K(+) in the stomach occurred following the cessation of Cl(-) secretion, providing indirect evidence of K(+) involvement with HCl acid production. Overall, 80-90% of the K(+) and Cl(-) contents of the meal were absorbed on a net basis, whereas net Na(+) absorption was negligible. Chyme-to-plasma ion concentration gradients were often opposed to the direction of ion transport, especially for Na(+) and Cl(-).  相似文献   

14.
Nutrition is an important variable which may affect the risk for renal disease. We previously showed that a high fructose diet in mice produced hypertension and sympathetic activation [8]. The purpose of this study was to determine if a fructose diet altered renal function. A high fructose diet for 12 weeks impaired glucose tolerance, but caused no change in body weight, blood glucose or plasma insulin. Impairment in renal function was documented by the almost two fold increase in urinary protein excretion (Control: 6.6+/-0.6 vs. Fructose: 15.0+/-0.7 mmol protein/mmol creatinine; p<0.05) which was also accompanied by increases in urinary volume. The diet produced little change in renal histology, kidney weight or kidney weight/body weight ratio. Urinary excretion of angiotensin II/creatinine (Control: 78.9+/-16.6 vs. Fructose: 80.5+/-14.2 pg/mmol) and renal angiotensin converting enzyme activity (Control: 9.2+/-1.6 vs. Fructose: 7.6+/-1.0 ACE units) were not different between groups. There was a positive correlation between mean arterial pressure (r=0.7, p=0.01), blood pressure variability (BPV) (r=0.7, p=0.02), low frequency BPV component (r=0.677, p=0.03) and urinary protein excretion. Results show that consumption of a high fructose diet in mice had deleterious effects on renal function, which were correlated with cardiovascular changes.  相似文献   

15.
The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular [Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.  相似文献   

16.
Stimulation of brain Na+ channels by Phe-Met-Arg-Phe-NH2 (FMRFamide) increases sympathetic nerve activity and blood pressure (BP) in Wistar rats. Blockade of brain ouabain-like compounds (OLC) by specific antibody Fab fragments prevents these responses to intracerebroventricular FMRFamide. In the present study, we evaluated the effects of high-salt intake on brain FMRFamide levels and the responses of BP and brain OLC to intracerebroventricular infusion of FMRFamide in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. FMRFamide and OLC content was measured with the use of RIA and ELISA, respectively. A high-salt diet (1,370 micromol Na+/g) for 2 wk significantly increased BP in Dahl SS but not in SR rats. On a regular salt diet, Dahl SS and SR rats showed similar FMRFamide levels in the whole hypothalamus, pons and medulla, and spinal cord. A high-salt diet for 2 wk did not affect FMRFamide levels in these tissues in both Dahl SS and SR rats. In Dahl SS but not in SR rats, chronic intracerebroventricular infusion of FMRFamide (200 nmol. kg(-1).day(-1)) for 2 wk significantly increased BP (mean arterial pressure: 116 +/- 5 vs. 100 +/- 2 mmHg; P < 0.01). Chronic intracerebroventricular infusion of FMRFamide significantly increased hypothalamic and pituitary OLC in Dahl SS but not SR rats. These results indicate that Dahl SS rats exhibit enhanced central responses to FMRFamide. In Dahl SS but not in SR rats on a high-salt diet, enhanced Na+ entry through FMRFamide-activated brain Na+ channels may increase brain OLC release, thereby leading to hypertension.  相似文献   

17.
We developed a pleural surface fluorescence method to measure Na(+) and Cl(-) transport in perfused mouse lungs. The air space was filled with aqueous fluid containing membrane-impermeant fluorescent indicators of Cl(-) (lucigenin) or Na(+) (Sodium Green). After instillation of a Cl(-)-free solution into the air space, an increase in perfusate Cl(-) concentration from 0 to 30 mM produced a decrease in surface lucigenin fluorescence (6.5%/min) corresponding to Cl(-) influx of 1.0 mM/min. Cl(-) influx was increased to 2.1 +/- 0.3 mM/min by forskolin, and the increase was inhibited by glibenclamide. cAMP-stimulated Cl(-) influx was decreased by 57% in CFTR null mice. After instillation of a Na(+)-free solution into the air space, an increase in perfusate Na(+) concentration from 0 to 30 mM gave increased Sodium Green fluorescence (Na(+) influx of 1.2 mM/min), which increased approximately fivefold after cAMP agonists. Cl(-) and Na(+) transport were not affected in lungs from mice lacking aquaporins AQP1 or AQP5. Our results establish a pleural surface fluorescence method to measure unidirectional Cl(-) and Na(+) flux in intact lung and provide evidence for cAMP-stimulated transcellular Cl(-) and Na(+) transport.  相似文献   

18.
The extent to which endogenously generated nitric oxide alters Na(+) transport across the mammalian alveolar epithelium in vivo has not been documented. Herein we measured alveolar fluid clearance and nasal potential differences in mice lacking the inducible form of nitric oxide synthase [iNOS; iNOS(-/-)] and their corresponding wild-type controls [iNOS(+/+)]. Alveolar fluid clearance values in iNOS(+/+) and iNOS(-/-) anesthetized mice with normal oxygenation and acid-base balance were ~30% of instilled fluid/30 min. In both groups of mice, fluid absorption was dependent on vectorial Na(+) movement. Amiloride (1.5 mM) decreased alveolar fluid clearance in iNOS(+/+) mice by 61%, whereas forskolin (50 microM) increased alveolar fluid clearance by 55% by stimulating amiloride-insensitive pathways. Neither agent altered alveolar fluid clearance in iNOS(-/-) mice. Hyperoxia upregulated iNOS expression in iNOS(+/+) mice and decreased their amiloride-sensitive component of alveolar fluid clearance but had no effect on the corresponding values in iNOS(-/-) mice. Nasal potential difference measurements were consistent with alveolar fluid clearance in that both groups of mice had similar baseline values, which were amiloride sensitive in the iNOS(+/+) but not in the iNOS(-/-) mice. These data suggest that nitric oxide produced by iNOS under basal conditions plays an important role in regulating amiloride-sensitive Na(+) channels in alveolar and airway epithelia.  相似文献   

19.
Several Na(+) transporters are functionally abnormal in the hypertensive rat. Here, we examined the effects of a high-salt load on renal Na(+),K(+)-ATPase and the sodium-coupled glucose transporter (SGLT1) in Dahl salt-resistant (DR) and salt-sensitive (DS) rats. The protein levels of Na(+),K(+)-ATPase and SGLT1 in the DS rat were the same as those in the DR rat, and were not affected by the high-salt load. In the DS rat, a high-salt load decreased Na(+),K(+)-ATPase activity, and this decrease coincided with a decrease in the apparent Mechaelis constant (K(m)) for ATP, but not with a change of maximum velocity (V(max)). On the contrary, a high-salt load increased SGLT1 activity in the DS rat, which coincided with an increase in the V(max) for alpha-methyl glucopyranoside. The protein level of phosphorylated tyrosine residues in Na(+),K(+)-ATPase was decreased by the high-salt load in the DS rat. The amount of phosphorylated serine was not affected by the high-salt load in DR rats, and could not be detected in DS rats. On the other hand, the amount of phosphorylated serine residues in SGLT1 was increased by the high-salt load. However, the phosphorylated tyrosine was the same for all samples. Therefore, we concluded that the high-salt load changes the protein kinase levels in DS rats, and that the regulation of Na(+),K(+)-ATPase and SGLT1 activity occurs via protein phosphorylation.  相似文献   

20.
This study compared measured serum [Na(+)] (S([Na+]); brackets denote concentration) with that predicted by the Nguyen-Kurtz equation after manipulating ingested [Na(+)] and changes in body mass (DeltaBM) during prolonged running in the heat. Athletes (4 men, 4 women; 22-36 yr) ran for 2 h, followed by a run to exhaustion and 1-h recovery. During exercise and recovery, subjects drank a 6% carbohydrate solution without Na(+) (Na(+)0), 6% carbohydrate solution with 18 mmol/l Na(+) (Na(+)18), or 6% carbohydrate solution with 30 mmol/l Na(+) (Na(+)30) to maintain BM (0%DeltaBM), increase BM by 2%, or decrease BM by 2% or 4% in 12 separate trials. Net fluid, Na(+), and K(+) balance were measured to calculate the Nguyen-Kurtz predicted S([Na+]) for each trial. For all beverages, predicted and measured S([Na+]) were not significantly different during the 0%, -2%, and -4%DeltaBM trials (-0.2 +/- 0.2 mmol/l) but were significantly different during the +2%DeltaBM trials (-2.6 +/- 0.5 mmol/l). Overall, Na(+) consumption attenuated the decline in S([Na+]) (-2.0 +/- 0.5, -0.9 +/- 0.5, -0.5 +/- 0.5 mmol/l from pre- to postexperiment of the 0%DeltaBM trials for Na(+)30, Na(+)18, and Na(+)0, respectively) but the differences among beverages were not statistically significant. Beverage [Na(+)] did not affect performance; however, time to exhaustion was significantly shorter during the -4% (8 +/- 3 min) and -2% (14 +/- 3 min) vs. 0% (22 +/- 5 min) and +2% (26 +/- 6 min) DeltaBM trials. In conclusion, when athletes maintain or lose BM, changes in S([Na+]) can be accurately predicted by changes in the mass balance of fluid, Na(+), and K(+) during prolonged running in the heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号