首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine, acting on A(1)-receptors (A(1)-AR) in the nephron, increases sodium reabsorption, and also increases renal vascular resistance (RVR), via A(1)-ARs in the afferent arteriole. ANG II increases blood pressure and RVR, and it stimulates adenosine release in the kidney. We tested the hypothesis that ANG II-infused hypertension is potentiated by A(1)-ARs' influence on Na(+) reabsorption. Mean arterial pressure (MAP) was measured by radiotelemetry in A(1)-AR knockout mice (KO) and their wild-type (WT) controls, before and during ANG II (400 ng·kg(-1)·min(-1)) infusion. Baseline MAP was not different between groups. ANG II increased MAP in both groups, but on day 12, MAP was lower in A(1)-AR KO mice (KO: 128 ± 3 vs. 139 ± 3 mmHg, P < 0.01). Heart rates were significantly different during days 11-14 of ANG II. Basal sodium excretion was not different (KO: 0.15 ± 0.03 vs. WT: 0.13 ± 0.04 mmol/day, not significant) but was higher in KO mice 12 days after ANG II despite a lower MAP (KO: 0.22 ± 0.03 vs. WT: 0.11 ± 0.02 mmol/day, P < 0.05). Phosphate excretion was also higher in A(1)-AR KO mice on day 12. Renal expression of the sodium-dependent phosphate transporter and the Na(+)/glucose cotransporter were lower in the KO mice during ANG II treatment, but the expression of the sodium hydrogen exchanger isoform 3 was not different. These results indicate that the increase in blood pressure seen in A(1)-AR KO mice is lower than that seen in WT mice but was increased by ANG II nonetheless. The presence of A(1)-ARs during a low dose of ANG II-infusion limits Na(+) and phosphate excretion. This study suggests that A(1)-AR antagonists might be an effective antihypertensive agent during ANG II and volume-dependent hypertension.  相似文献   

2.
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.  相似文献   

3.
It has been shown that the area postrema (AP) plays a role in the development of certain types of chronic angiotensin II (ANG II)-induced hypertension in the rat but is not of great importance in the salt sensitivity of arterial pressure. It has recently been proposed, however, that elevated sodium levels may exacerbate the hypertensive effects of ANG II, which by itself dramatically affects salt sensitivity, by acting at sodium-sensing neurons in certain circumventricular organs of the brain. Thus the interactions of ANG II, sodium, and the central nervous system remain to be fully understood. The purpose of this study was to examine the role of the AP in ANG II-induced hypertension during periods of normal and elevated dietary salt. We hypothesized that an intact AP was necessary for the full development of hypertension under chronic ANG II infusion and that its role would be pronounced during periods of increased dietary sodium. To test this, male Sprague-Dawley rats underwent ablation of the area postrema (APx, n = 6) or sham operation (sham, n = 6). After 3 wk of recovery, rats were instrumented with radiotelemetry transducers for constant blood pressure and heart rate monitoring and venous catheters for vehicle infusion. After a 3-day control period of 0.9% saline infusion (7 ml/day) and 0.4% dietary sodium, a 10-day period of ANG II infusion (10 ng.kg(-1).min(-1)) was begun, immediately followed by a second 10-day period during which rats were fed a 4.0% sodium diet. By day 6 of ANG II infusion, mean arterial pressure (MAP) in APx rats had increased to 139 +/- 4 mmHg, whereas MAP in sham rats had increased to 126 +/- 3 mmHg. This difference was found to be significant and continued through day 1 of the high-salt period, after which MAP of the two groups had risen to similar levels. On day 9 of high salt, MAP was again observed to be significantly higher (162 +/- 1 mmHg) in APx rats when compared with sham rats (147 +/- 4 mmHg.) These results do not support the hypothesis that the AP is necessary for the full development of ANG II-induced hypertension at normal or elevated levels of dietary sodium.  相似文献   

4.
Recent studies indicate that renal sympathetic nerve activity is chronically suppressed during ANG II hypertension. To determine whether cardiopulmonary reflexes and/or arterial baroreflexes mediate this chronic renal sympathoinhibition, experiments were conducted in conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. Dogs were studied 1) intact, 2) after thoracic vagal stripping to eliminate afferents from cardiopulmonary and aortic receptors [cardiopulmonary denervation (CPD)], and 3) after subsequent denervation of the carotid sinuses to achieve CPD plus complete sinoaortic denervation (CPD + SAD). After control measurements, ANG II was infused for 5 days at a rate of 5 ng. kg(-1). min(-1). In the intact state, 24-h control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 98 +/- 4 mmHg and 1.04 +/- 0.04, respectively. ANG II caused sodium retention and a sustained increase in MAP of 30-35 mmHg. Throughout ANG II infusion, there was a greater rate of sodium excretion from Inn vs. Den kidneys (day 5 Den/Inn sodium = 0.51 +/- 0.05), indicating chronic suppression of renal sympathetic nerve activity. CPD and CPD + SAD had little or no influence on baseline values for either MAP or the Den/Inn sodium, nor did they alter the severity of ANG II hypertension. However, CPD totally abolished the fall in the Den/Inn sodium in response to ANG II. Furthermore, after CPD + SAD, there was a lower, rather than a higher, rate of sodium excretion from Inn vs. Den kidneys during ANG II infusion (day 5 Den/Inn sodium = 2.02 +/- 0.14). These data suggest that cardiac and/or arterial baroreflexes chronically inhibit renal sympathetic nerve activity during ANG II hypertension and that in the absence of these reflexes, ANG II has sustained renal sympathoexcitatory effects.  相似文献   

5.
The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.  相似文献   

6.
Oxidative stress is implicated in menopause-associated hypertension and cardiovascular disease. The role of antioxidants in this process is unclear. We questioned whether the downregulation of thioredoxin (TRX) is associated with oxidative stress and the development of hypertension and target-organ damage (cardiac hypertrophy) in a menopause model. TRX is an endogenous antioxidant that also interacts with signaling molecules, such as apoptosis signal-regulated kinase 1 (ASK-1), independently of its antioxidant function. Aged female wild-type (WT) and follitropin receptor knockout (FORKO) mice (20-24 wk), with hormonal imbalances, were studied. Mice were infused with ANG II (400 ng x kg(-1) x min(-1); 14 days). Systolic blood pressure was increased by ANG II in WT (166+/-8 vs. 121+/-5 mmHg) and FORKO (176+/-7 vs. 115+/-5 mmHg; P<0.0001; n=9/group) mice. In ANG II-infused FORKO mice, cardiac mass was increased by 42% (P<0.001). This was associated with increased collagen content and augmented ERK1/2 phosphorylation (2-fold). Cardiac TRX expression and activity were decreased by ANG II in FORKO but not in WT (P<0.01) mice. ASK-1 expression, cleaved caspase III content, and Bax/Bcl-2 content were increased in ANG II-infused FORKO (P<0.05). ANG II had no effect on cardiac NAD(P)H oxidase activity or on O(2)(*-) levels in WT or FORKO. Cardiac ANG II type 1 receptor expression was similar in FORKO and WT. These findings indicate that in female FORKO, ANG II-induced cardiac hypertrophy and fibrosis are associated with the TRX downregulation and upregulation of ASK-1/caspase signaling. Our data suggest that in a model of menopause, protective actions of TRX may be blunted, which could contribute to cardiac remodeling independently of oxidative stress and hypertension.  相似文献   

7.
To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 +/- 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 +/- 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 +/- 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by approximately 50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.  相似文献   

8.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

9.
Estrogen facilitates baroreflex heart rate responses evoked by intravenous infusion of ANG II and phenylephrine (PE) in ovariectomized female mice. The present study aims to identify the estrogen receptor subtype involved in mediating these effects of estrogen. Baroreflex responses to PE, ANG II, and sodium nitroprusside (SNP) were tested in intact and ovariectomized estrogen receptor-alpha knockout (ERalphaKO) with (OvxE+) or without (OvxE-) estrogen replacement. Wild-type (WT) females homozygous for the ERalpha(+/+) were used as controls. Basal mean arterial pressures (MAP) and heart rates were comparable in all the groups except the ERalphaKO-OvxE+ mice. This group had significantly smaller resting MAP, suggesting an effect of estrogen on resting vascular tone possibly mediated by the ERbeta subtype. Unlike the WT females, estrogen did not facilitate baroreflex heart rate responses to either PE or ANG II in the ERalphaKO-OvxE+ mice. The slope of the line relating baroreflex heart rate decreases with increases in MAP evoked by PE was comparable in ERalphaKO-OvxE- (-6.97 +/- 1.4 beats.min(-1).mmHg(-1)) and ERalphaKO-OvxE+ (-6.18 +/- 1.3) mice. Likewise, the slope of the baroreflex bradycardic responses to ANG II was similar in ERalphaKO-OvxE- (-3.87 +/- 0.5) and ERalphaKO-OvxE+(-2.60 +/- 0.5) females. Data suggest that estrogen facilitation of baroreflex responses to PE and ANG II is predominantly mediated by ERalpha subtype. A second important observation in the present study is that the slope of ANG II-induced baroreflex bradycardia is significantly blunted compared with PE in the intact as well as the ERalphaKO-OvxE+ females. We have previously reported that this ANG II-mediated blunting of cardiac baroreflexes is observed only in WT males and not in ovariectomized WT females independent of their estrogen replacement status. The present data suggest that in females lacking ERalpha, ANG II causes blunting of cardiac baroreflexes similar to males and may be indicative of a direct modulatory effect of the ERalpha on those central mechanisms involved in ANG II-induced resetting of cardiac baroreflexes. These observations suggest an important role for ERalpha subtype in the central modulation of baroreflex responses. Lastly, estrogen did not significantly affect reflex tachycardic responses to SNP in both WT and ERalphaKO mice.  相似文献   

10.
The present study examined the effects of ANG II on the renal synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) and its contribution to the renal vasoconstrictor and the acute and chronic pressor effects of ANG II in rats. ANG II (10(-11) to 10(-7) mol/l) reduced the diameter of renal interlobular arteries treated with inhibitors of nitric oxide synthase and cyclooxygenase, lipoxygenase, and epoxygenase by 81 +/- 8%. Subsequent blockade of the synthesis of 20-HETE with 17-octadecynoic acid (1 micromol/l) increased the ED(50) for ANG II-induced constriction by a factor of 15 and diminished the maximal response by 61%. Graded intravenous infusion of ANG II (5-200 ng/min) dose dependently increased mean arterial pressure (MAP) in thiobutylbarbitol-anesthetized rats by 35 mmHg. Acute blockade of the formation of 20-HETE with dibromododecenyl methylsulfimide (DDMS; 10 mg/kg) attenuated the pressor response to ANG II by 40%. An intravenous infusion of ANG II (50 ng. kg(-1). min(-1)) in rats for 5 days increased the formation of 20-HETE and epoxyeicosatrienoic acids (EETs) in renal cortical microsomes by 60 and 400%, respectively, and increased MAP by 78 mmHg. Chronic blockade of the synthesis of 20-HETE with intravenous infusion of DDMS (1 mg. kg(-1). h(-1)) or EETs and 20-HETE with 1-aminobenzotriazole (ABT; 2.2 mg. kg(-1). h(-1)) attenuated the ANG II-induced rise in MAP by 40%. Control urinary excretion of 20-HETE averaged 350 +/- 23 ng/day and increased to 1,020 +/- 105 ng/day in rats infused with ANG II (50 ng. kg(-1). min(-1)) for 5 days. In contrast, urinary excretion of 20-HETE only rose to 400 +/- 40 and 600 +/- 25 ng/day in rats chronically treated with ANG II and ABT or DDMS respectively. These results suggest that acute and chronic elevations in circulating ANG II levels increase the formation of 20-HETE in the kidney and peripheral vasculature and that 20-HETE contributes to the acute and chronic pressor effects of ANG II.  相似文献   

11.
While low nephron number is associated with increased risk of developing cardiovascular and renal disease, the functional consequences of a high nephron number are unknown. We tested the hypothesis that a high nephron number provides protection against hypertensive and renal insults. Mean arterial pressure (MAP) and renal function were characterized in male wild-type (WT) and transforming growth factor-β2 heterozygous (Tgfb2(+/-)) mice under basal conditions and following a chronic high-salt diet. Kidneys were collected for unbiased stereological analysis. Baseline MAP and renal function were indistinguishable between genotypes. The chronic high-salt diet (5% NaCl for 4 wk followed by 8% NaCl for 4 wk) led to similar step-wise increases in urine volume, Na(+) excretion, and albuminuria in the genotypes. The 5% NaCl diet induced modest and similar increases in MAP (3.5 ± 1.6 and 3.4 ± 0.8 mmHg in WT and Tgfb2(+/-), respectively). After the step up to the 8% NaCl diet, MAP increased further in WT (+15.9 ± 5.1 mmHg), but not Tgfb2(+/-) (-0.1 ± 1.0 mmHg), mice. Nephron number was 30% greater in Tgfb2(+/-) than WT mice and was not affected by the chronic high-salt diet. Mean glomerular volume was lower in Tgfb2(+/-) than WT mice, and the chronic high-salt diet induced significant glomerular hypertrophy. In a separate cohort of mice, an acute, 7-day, 8% NaCl diet induced similar rises in MAP in the genotypes. This is the first study to examine the physiological characteristics of a model of high nephron number, and the findings are consistent with this phenotype providing protection against chronic, but not acute, hypertensive insults.  相似文献   

12.
Activation of peroxisome proliferator activated receptor (PPAR)alpha and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARalpha ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARalpha activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARalpha ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARalpha knockout (KO) mice compared with its wild type (WT) litter mates (130+/-10 mmHg versus 107+/-4 mmHg). L-NAME (100mg/L p.o.), the inhibitor of NO production abolished the difference between PPARalpha KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8+/-1.4 pM/mg versus 8.3+/-0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46+/-6%, p<0.05) and a approximately 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARalpha WT compared with the KO mice. Clofibrate, a PPARalpha ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19+/-4%, p<0.05), increased urinary NO excretion (4.06+/-0.53-7.07+/-1.59 microM/24 h; p<0.05) and reduced plasma 8-isoprostane level (45.8+/-15 microM versus 31.4+/-8 microM), and NADP(H) oxidase activity (16+/-5%). Implantation of DOCA pellet (20mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193+/-13 mmHg versus 130+/-12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARalpha activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity.  相似文献   

13.
It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.  相似文献   

14.
These studies were designed to determine if the atria contains natriuretic substances that act through a non-natriuretic peptide type A (NPRA) receptor mechanism. C57BL/6 mice, either wild-type NPRA++ (WT) or NPRA-- knockout (KO), were anesthetized with pentobarbital. Catheters were placed in the trachea, carotid artery, jugular vein, and bladder. Urine was collected for six 30-min periods. Both groups received an iv injection of 100 ng of rat atrial natriuretic peptide (rANP) in 200 microl of saline after the first period (30 mins) and 200 microl of rat atrial extract after the fourth period (120 mins). ANP injection increased urine flow (UF) to 2.7 +/- 0.5 microl/min in the WT versus 1.9 +/- 0.2 in KO. Extract increased UF to 7.9 +/- 1.5 microl/min in WT versus 2.7 +/- 0.4 in KO (P < 0.01). ANP increased sodium excretion (ENa) to 0.47 +/- 0.10 micromoles/min in WT versus 0.27 +/- 0.04 in KO (P < 0.05). Extract increased ENa to 1.44 +/- 0.47 micromoles/min in WT versus 0.26 +/- 0.06 in KO (P < 0.05). Extract decreased mean arterial pressure (MAP) to 62 +/- 3 mm Hg in the WT versus 81 +/- 5 in KO (P < 0.01). ENa and MAP responses to extract in KO were not different from responses to 200 microl of saline. A constant 150-min infusion of rat atrial extract increased urine flow by 3-fold and ENa by 5-fold (both P < 0.05) in the WT mice but had no significant effect in the KO mice. Thus, acute renal and MAP responses to atrial extracts require the NPRA receptor.  相似文献   

15.
Previous studies suggest that ANG II-induced hypertension in rats fed a high-salt (HS) diet (ANG II-salt hypertension) has a neurogenic component dependent on an enhanced sympathetic tone to the splanchnic veins and independent from changes in sympathetic nerve activity to the kidney or hind limb. The purpose of this study was to extend these findings and test whether altered autonomic control of splanchnic resistance arteries and the heart also contributes to the neurogenic component. Mean arterial pressure (MAP), heart rate (HR), superior mesenteric artery blood flow, and mesenteric vascular resistance (MVR) were measured during 4 control days, 14 days of ANG II delivered subcutaneously (150 ng·kg(-1)·min(-1)), and 4 days of recovery in conscious rats fed a HS (2% NaCl) or low-salt (LS; 0.1% NaCl) diet. Autonomic effects on MAP, HR, and MVR were assessed by acute ganglionic blockade with hexamethonium (20 mg/kg iv) on day 3 of control, days 1, 3, 5, 7, 10, and 13 of ANG II, and day 4 of recovery. MVR increased during ANG II infusion in HS and LS rats but remained elevated only in HS rats. Additionally, the MVR response to hexamethonium was enhanced on days 10 and 13 of ANG II selectively in HS rats. Compared with LS rats, HR in HS rats was higher during the 2nd wk of ANG II, and its response to hexamethonium was greater on days 7, 10, and 13 of ANG II. These results suggest that ANG II-salt hypertension is associated with delayed changes in autonomic control of splanchnic resistance arteries and the heart.  相似文献   

16.
Studies suggest that the inflammatory cytokine TNF-alpha plays a role in the prognosis of end-stage renal diseases. We previously showed that TNF-alpha inhibition slowed the progression of hypertension and renal damage in angiotensin II salt-sensitive hypertension. Thus, we hypothesize that TNF-alpha contributes to renal inflammation in a model of mineralocorticoid-induced hypertension. Four groups of rats (n = 5 or 6) were studied for 3 wk with the following treatments: 1) placebo, 2) placebo + TNF-alpha inhibitor etanercept (1.25 mg.kg(-1).day(-1) sc), 3) deoxycorticosterone acetate + 0.9% NaCl to drink (DOCA-salt), or 4) DOCA-salt + etanercept. Mean arterial blood pressure (MAP) measured by telemetry increased in DOCA-salt rats compared with baseline (177 +/- 4 vs. 107 +/- 3 mmHg; P < 0.05), and TNF-alpha inhibition had no effect in the elevation of MAP in these rats (177 +/- 8 mmHg). Urinary protein excretion significantly increased in DOCA-salt rats compared with placebo (703 +/- 76 vs. 198 +/- 5 mg/day); etanercept lowered the proteinuria (514 +/- 64 mg/day; P < 0.05 vs. DOCA-salt alone). Urinary albumin excretion followed a similar pattern in each group. Urinary monocyte chemoattractant protein (MCP)-1 and endothelin (ET)-1 excretion were also increased in DOCA-salt rats compared with placebo (MCP-1: 939 +/- 104 vs. 43 +/- 7 ng/day, ET-1: 3.30 +/- 0.29 vs. 1.07 +/- 0.03 fmol/day; both P < 0.05); TNF-alpha inhibition significantly decreased both MCP-1 and ET-1 excretion (409 +/- 138 ng/day and 2.42 +/- 0.22 fmol/day, respectively; both P < 0.05 vs. DOCA-salt alone). Renal cortical NF-kappaB activity also increased in DOCA-salt hypertensive rats, and etanercept treatment significantly reduced this effect. These data support the hypothesis that TNF-alpha contributes to the increase in renal inflammation in DOCA-salt rats.  相似文献   

17.
Heme oxygenase-1 (HO-1) induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure in this model is not clear. The goal of this study was to test the hypothesis that induction of HO-1 in the kidney can attenuate the increase in reactive oxygen species (ROS) generation in the kidney that occurs during ANG II-dependent hypertension. Mice were divided into four groups, control (Con), cobalt protoporphyrin (CoPP), ANG II, and ANG II + CoPP. CoPP treatment (50 mg/kg) was administered in a single subcutaneous injection 2 days prior to implantation of an osmotic minipump that infused ANG II at a rate of 1 microg x kg(-1) x min(-1). At the end of this period, mean arterial blood pressure (MAP) averaged 93 +/- 5, 90 +/- 5, 146 +/- 8, and 105 +/- 6 mmHg in Con, CoPP-, ANG II-, and ANG II + CoPP-treated mice. To determine whether HO-1 induction resulted in a decrease in ANG II-stimulated ROS generation in the renal medulla, superoxide production was measured. Medullary superoxide production was increased by ANG II infusion and normalized in mice pretreated with CoPP. The reduction in ANG II-mediated superoxide production in the medulla with CoPP was associated with a decrease in extracellular superoxide dismutase protein but an increase in catalase protein and activity. These results suggest that reduction in superoxide and possibly hydrogen peroxide production in the renal medulla may be a potential mechanism by which induction of HO-1 with CoPP lowers blood pressure in ANG-II dependent hypertension.  相似文献   

18.
The present studies were performed to quantify circulating components of the renin-angiotensin-aldosterone axis and to determine the functional importance of this system during alterations in sodium intake in conscious mice. Increasing sodium intake from approximately 200 to 1,000 microeq/day significantly decreased plasma renin concentration from 472 +/- 96 to 304 +/- 83 ng ANG I. ml(-1). h(-1) (n = 5) but did not alter plasma renin activity from the low-sodium level of 7.7 +/- 1.1 ng ANG I. ml(-1). h(-1). Despite the elevated plasma renin concentration, plasma ANG II in mice on low-sodium level averaged 14 +/- 3 pg/ml and was significantly suppressed to 6 +/- 1 pg/ml by high-sodium intake (n = 7). Consistent with the modulation of ANG II, plasma aldosterone significantly decreased from 41 +/- 8 to 8 +/- 3 ng/dl when sodium intake was elevated (n = 6). In a final set of experiments, the continuous infusion of ANG II (20 ng. kg(-1). min(-1)) led to a mild salt-sensitive increase in mean arterial pressure from 108 +/- 2 to 131 +/- 2 mmHg as sodium intake was varied from low to high (n = 7). In vehicle-infused mice, mean arterial pressure was unaltered from 109 +/- 2 mmHg when sodium intake was increased (n = 6). These studies indicate that the physiological suppression of circulating ANG II may be required to maintain a constancy of arterial pressure during alterations in sodium intake in normal mice.  相似文献   

19.
We investigated whether angiotensin II (ANG II), a peptide that plays a central role in the genesis of hypertension, alters the coupling between synaptic activity and cerebral blood flow (CBF), a critical homeostatic mechanism that assures adequate cerebral perfusion to active brain regions. The somatosensory cortex was activated by stroking the facial whiskers in anesthetized C57BL/6J mice while local CBF was recorded by laser-Doppler flowmetry. Intravenous ANG II infusion (0.25 mug.kg-1.min-1) increased mean arterial pressure (MAP) from 82 +/- 2 to 102 +/- 3 mmHg (P < 0.05) without affecting resting CBF (P > 0.05). ANG II attenuated the CBF increase produced by whisker stimulation by 65% (P < 0.05) but did not affect the response to hypercapnia or to neocortical application of the nitric oxide donor S-nitroso-N-acetyl penicillamine (P > 0.05). The effect of ANG II on functional hyperemia persisted if the elevation in MAP was offset by controlled hemorrhage or prevented by topical application of the peptide to the activated cortex. ANG II did not reduce the amplitude of the P1 wave of the field potentials evoked by whisker stimulation (P > 0.05). Infusion of phenylephrine increased MAP (P > 0.05 from ANG II) but did not alter the functional hyperemic response (P > 0.05). The data suggest that ANG II alters the coupling between CBF and neural activity. The mechanisms of the effect are not related to the elevation in MAP and/or to inhibition of the synaptic activity evoked by whisker stimulation. The imbalance between CBF and neural activity induced by ANG II may alter the homeostasis of the neuronal microenvironment and contribute to brain dysfunction during ANG II-induced hypertension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号