首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coronary endothelial dysfunction is a powerful prognostic marker in patients with coronary artery disease (CAD) that is centrally related to oxidative inhibition of nitric oxide (NO)-dependent vascular cell signaling. Xanthine oxidase (XO), which both binds to and is expressed by endothelial cells, generates superoxide and hydrogen peroxide upon oxidation of purines. Whether inhibition of xanthine oxidase activity results in improved coronary vasomotor function in patients with CAD, however, remains unknown. We assessed coronary and peripheral (brachial artery) endothelial function in 18 patients (pts; 65+/-8 years, 86% male) with angiographically documented CAD, preserved left ventricular function, and non-elevated uric acid levels (233+/-10 microM). Patients received incremental doses of intracoronary acetylcholine (ACh; 10(-7) to 10(-5) microM), and minimal lumen diameter (MLD) and coronary blood flow (CBF) were assessed before and after intravenous administration of oxypurinol (200 mg). Oxypurinol inhibited plasma XO activity 63% (0.051+/- 0.001 vs 0.019+/- 0.005 microU/mg protein; p<0.01). In pts who displayed endothelial dysfunction as evidenced by coronary vasoconstriction in response to ACh (n=13), oxypurinol markedly attenuated ACh-induced vasoconstriction (-23+/- 4 vs -15+/- 4% at ACh 10(-5) microM, p<0.05) and significantly increased CBF (16+/-17 vs 62+/-18% at ACh 10(-5) microM, p<0.05), whereas in patients with preserved coronary endothelial function, oxypurinol had no effect on ACh-dependent changes in MLD (+2.8+/- 4.2 vs 5.2+/- 0.7%, p>0.05) or CBF (135+/-75 vs 154+/-61%, p>0.05). Flow-mediated dilation of the brachial artery, assessed in eight consecutive patients, increased from 5.1+/-1.5 before to 7.6+/-1.5% after oxypurinol administration (p < 0.05). Oxypurinol inhibition of XO improves coronary vascular endothelial dysfunction, a hallmark of patients with CAD. These observations reveal that XO-derived reactive oxygen species significantly contribute to impaired coronary NO bioavailability in CAD and that XO inhibition represents an additional treatment concept for inflammatory vascular diseases that deserves further investigation.  相似文献   

2.
Our objective was to investigate the functional role of hypercholesterolemia-associated myocardial neovascularization in early atherosclerosis using the antiangiogenic thalidomide. Experimental atherosclerosis is characterized by myocardial neovascularization, associated with a decrease in myocardial perfusion response to challenge, coronary endothelial dysfunction, and high oxidative stress. However, the functional significance of these neovessels is not known. Three groups of pigs (n = 6 each) were studied after 12 wk of normal or hypercholesterolemic diet without (HC) or with thalidomide (HC + Thal). Myocardial perfusion and permeability were assessed at baseline and in response to cardiac challenge, using electron beam computed tomography, and coronary endothelial function was assessed using organ chambers. Myocardial samples were scanned ex vivo with a three-dimensional microscopic computed tomography scanner, and the spatial density of the myocardial microvessels was quantified. Growth factors and oxidative stress were measured in the myocardial tissue. As a results of these procedures, myocardial perfusion response to adenosine and dobutamine was blunted in both HC and HC + Thal pigs compared with normal pigs (P < 0.05, HC and HC + Thal vs. normal) as was the coronary endothelial function. Myocardial permeability response to adenosine was increased in both HC and HC + Thal pigs compared with normal pigs (P < 0.05, HC and HC + Thal vs. normal, and HC + Thal vs. HC). The microvascular density was increased in HC pigs compared with normal pigs but normalized in HC + Thal pigs (P < 0.001 HC vs. normal and HC + Thal). HC + Thal pigs showed decreased expression of Flk-1 and basic FGF but increased expression of VEGF compared with normal and HC pigs. Oxidative stress was increased in both HC and HC + Thal pigs compared with normal pigs. In conclusion, chronic administration of thalidomide attenuates myocardial neovascularization in experimental HC pigs without affecting myocardial perfusion response to stimulation. This suggests that the myocardial neovascularization may not contribute to the attenuated myocardial perfusion response in hypercholesterolemia.  相似文献   

3.
Hypercholesterolemia (HC) is characterized by increased circulating 8-epi-prostaglandin-F(2alpha) (isoprostane), a vasoconstrictor, marker, and mediator of increased oxidative stress, whose vascular effects might be augmented in HC. Anesthetized pigs were studied in vivo with electron beam computed tomography after a 12-wk normal (n = 8) or HC (n = 8) diet. Mean arterial pressure (MAP), single-kidney perfusion, and glomerular filtration rate (GFR) were quantified before and during unilateral intrarenal infusions of U46619 (10 ng x kg(-1) x min(-1)) or isoprostane (1 microg x kg(-1) x min(-1)). Basal renal perfusion and function were similar, and isoprostane infusion elevated its systemic levels similarly in normal and HC (333 +/- 89 vs. 366 +/- 48 pg/ml, respectively, P < 0.01 vs. baseline). Both drugs markedly and comparably decreased cortical perfusion and GFR in both groups, whereas medullary perfusion decreased significantly only in HC. Moreover, MAP increased significantly only in HC (+9 +/- 3 and +11 +/- 3 mmHg, respectively, P相似文献   

4.
Exercise training is known to improve vasodilating mechanisms mediated by endothelium-dependent relaxing factors in the cardiac and skeletal muscle vascular beds. However, the effects of exercise training on visceral vascular reactivity, including the renal circulation, are still unclear. We used the experimental model of the isolated perfused rabbit kidney, which involves both the renal macro- and microcirculation, to test the hypothesis that exercise training improves vasodilator mechanisms in the entire renal circulation. New Zealand White rabbits were pen confined (Sed; n = 24) or treadmill trained (0% grade) for 5 days/wk at a speed of 18 m/min during 60 min over a 12-wk period (ExT; n = 24). Kidneys isolated from Sed and ExT rabbits were continuously perfused in a nonrecirculating system under conditions of constant flow and precontracted with norepinephrine (NE). We assessed the effects of exercise training on renal vascular reactivity using endothelial-dependent [acetylcholine (ACh) and bradykinin (BK)] and -independent [sodium nitroprusside (SNP)] vasodilators. ACh induced marked and dose-related vasodilator responses in kidneys from Sed rabbits, the reduction in perfusion pressure reaching 41 +/- 8% (n = 6; P < 0.05). In the kidneys from ExT rabbits, vasodilation induced by ACh was significantly enhanced to 54 +/- 6% (n = 6; P < 0.05). In contrast, BK-induced renal vasodilation was not enhanced by training [19 +/- 8 and 13 +/- 4% reduction in perfusion pressure for Sed and ExT rabbits, respectively (n = 6; P > 0.05)]. Continuous perfusion of isolated kidneys from ExT animals with N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 microM), an inhibitor of nitric oxide (NO) biosynthesis, completely blunted the additional vasodilation elicited by ACh [reduction in perfusion pressure of 54 +/- 6 and 38 +/- 5% for ExT and L-NAME + ExT, respectively (n = 6; P < 0.05)]. On the other hand, L-NAME infusion did not affect ACh-induced vasodilation in Sed animals. Exercise training also increased renal vasodilation induced by SNP [36 +/- 7 and 45 +/- 10% reduction in perfusion pressure for Sed and ExT rabbits, respectively (n = 6; P < 0.05)]. It is concluded that exercise training alters the rabbit kidney vascular reactivity, enhancing endothelium-dependent and -independent renal vasodilation. This effect seems to be related not only to an increased bioavailability of NO but also to the enhanced responsiveness of the renal vascular smooth muscle to NO.  相似文献   

5.
Ten-day administration of the glutamate-cysteine ligase inhibitor L-buthionine-[S,R]-sulfoximine (BSO; 20 or 30 mM in drinking water) to adult male Sprague-Dawley rats induced 50-60% glutathione depletion (p<0.001) and elevated aortic ring reactive oxygen species release and tissue and plasma H2O2 concentrations (p<0.001) compared to control animals (CON) that consumed normal drinking water. In contrast to previous studies using tail cuff plethysmography methods, BSO had no significant effect on systolic blood pressure assessed by indwelling femoral artery catheters in conscious animals (10-day values, 119+/-3 mn Hg vs 122+/-4 mm Hg in CON vs BSO, respectively). Thoracic aorta rings were excised for in vitro assessment of vasomotor function. BSO shifted the phenylephrine (PE) dose-response curve to the left (p=0.003), lowering the EC50 for PE contraction (from -6.752+/-0.056 to -7.056+/-0.055 log units; p=0.001). Endothelium-dependent relaxation to acetylcholine (ACh) was significantly blunted (p=0.019) and the EC50 for ACh relaxation was significantly increased (from -7.428+/-0.117 to -7.129+/-0.048 log units; p=0.02) in BSO vs CON. Endothelium-independent vasorelaxation to sodium nitroprusside was similar in BSO and CON groups. Thoracic aorta immunoblot analyses revealed increases in endothelial nitric oxide synthase, superoxide dismutase 1 and 2, and soluble guanylate cyclase in BSO vs CON (all p<0.01). Thus, enhanced PE contraction, blunted endothelium-dependent relaxation, and adaptations in nitric oxide bioavailability pathways provide the first evidence of chronic, in vivo BSO-induced, oxidative stress-mediated direct effects on the vasomotor function of arteries.  相似文献   

6.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50 = 0.600 +/- 0.009 microM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50 = 1.326 +/- 0.013 microM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50 = 1.564 +/- 0.065 microM) also showed comparable inhibitory activity to that of allopurinol (IC50 = 0.776 +/- 0.012 microM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophenolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound was inhibiting enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

7.
The goal of this study was to determine the effects of peroxynitrite (ONOO-) on smooth muscle membrane potential and vasomotor function in rabbit carotid arteries. ONOO- is known to affect vascular tone by several mechanisms, including effects on K+ channels. Xanthine (X, 0.1 mM), xanthine oxidase (XO, 0.01 U/ml), and a low concentration of sodium nitroprusside (SNP, 10 nM) were used to generate ONOO-. In the common carotid artery, X and XO (X/XO) in the presence of SNP tended to increase tension. In contrast, in the internal carotid artery, X/XO in the presence of SNP transiently hyperpolarized the membrane (-8.5 +/- 1.8 mV, mean +/- SE) and decreased tension (by 85 +/- 5.6%). In internal carotid arteries, in the absence of SNP, X/XO did not hyperpolarize the membrane and produced much less relaxation (by 23 +/- 5.6%) than X/XO and SNP. Ebselen (50 microM) inhibited both hyperpolarization and relaxation to X/XO and SNP, and uric acid (100 microM) inhibited relaxation. Glibenclamide (1 microM) abolished hyperpolarization and inhibited relaxation during X/XO and SNP. Charybdotoxin (100 nM) or tetraethylammonium (1 mM) did not affect hyperpolarization or relaxation, respectively. These results suggest that ONOO- hyperpolarizes and relaxes smooth muscle in rabbit internal carotid artery but not in common carotid artery through activation of K(ATP) channels.  相似文献   

8.
Xanthine oxidase (XO), an enzyme involved in purine metabolism, is a source of either oxidants (superoxide radical) or antioxidants (uric acid). Interference with XO activity can lead to oxidative stress, thus contributing to the pathogenesis of cardiovascular diseases. The adenosine receptors antagonist, 1,3-dipropyl-8-sulfophenylxanthine (DPSPX), induces hypertension and cardiovascular injury in rats. Since DPSPX is a xanthine, we aimed at evaluating DPSPX's influence on XO activity to ascertain its contribution to DPSPX-induced hypertension. The activity of isolated XO in the presence of DPSPX was evaluated spectrophotometrically. Serum and urinary uric acid levels of DPSPX-treated rats were measured using a commercial kit. DPSPX inhibited XO activity in a concentration-dependent manner and reduced rat serum and urinary uric acid levels. It can be concluded that: DPSPX is an inhibitor of XO; decreased generation of uric acid may lead to oxidative stress, thus contributing to endothelial dysfunction and vascular morphological changes in DPSPX-treated rats.  相似文献   

9.
Xanthine oxidase (XO), an enzyme involved in purine metabolism, is a source of either oxidants (superoxide radical) or antioxidants (uric acid). Interference with XO activity can lead to oxidative stress, thus contributing to the pathogenesis of cardiovascular diseases. The adenosine receptors antagonist, 1,3-dipropyl-8-sulfophenylxanthine (DPSPX), induces hypertension and cardiovascular injury in rats. Since DPSPX is a xanthine, we aimed at evaluating DPSPX's influence on XO activity to ascertain its contribution to DPSPX-induced hypertension. The activity of isolated XO in the presence of DPSPX was evaluated spectrophotometrically. Serum and urinary uric acid levels of DPSPX-treated rats were measured using a commercial kit. DPSPX inhibited XO activity in a concentration-dependent manner and reduced rat serum and urinary uric acid levels. It can be concluded that: DPSPX is an inhibitor of XO; decreased generation of uric acid may lead to oxidative stress, thus contributing to endothelial dysfunction and vascular morphological changes in DPSPX-treated rats.  相似文献   

10.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

11.
Reactive oxygen species, in particular superoxide, have been closely linked to the underlying pathophysiology of ischemic cardiomyopathy: superoxide not only mediates mechanoenergetic uncoupling of the myocyte but also adversely impacts on myocardial perfusion by depleting endothelial-derived nitric oxide bioavailability. Xanthine oxidase generates superoxide upon oxidation of hypoxanthine and xanthine and has been detected in cardiac myocytes and coronary endothelial cells of patients with ischemic heart disease. Here we investigated the effects of oxypurinol, a xanthine oxidase inhibitor, on myocardial contractility in patients with ischemic cardiomyopathy. Twenty patients (19 males, 66+/-8 years) with stable coronary disease, severely suppressed systolic function (left ventricular ejection fraction 22+/-2%), and nonelevated uric acid plasma levels received a single intravenous dose of oxypurinol (400 mg). Cardiac MRI studies, performed before and 5.2+/-0.9 h after oxypurinol administration, revealed a reduction in end-systolic volumes (-9.7+/-4.2%; p=0.03) and an increase in left ventricular ejection fraction (+17.5+/-5.2%; p=0.003), whereas 6 patients (6 males, 63+/-3.8 years, ejection fraction 26+/-5%) who received vehicle only did not show significant changes in any of the parameters studied. Oxypurinol improves left ventricular function in patients with ischemic cardiomyopathy. These results underscore the significance of reactive oxygen species as important pathophysiological mediators in ischemic heart failure and point toward xanthine oxidase as an important source of reactive species that serve to modulate the myocardial redox state in this disease.  相似文献   

12.
Metabolic syndrome (MetS) is associated with glomerular hyperfiltration and is a risk factor for chronic kidney disease, but the underlying mechanisms are poorly defined. This study tested the hypothesis that increased glomerular filtration rate (GFR) in early MetS is associated with renal adiposity and microvascular proliferation. Twelve MetS-prone Ossabaw pigs were randomized to 10 wk of a standard (lean, n = 6) or atherogenic (MetS, n = 6) diet. Kidney hemodynamics and function, perirenal fat volume, and tubular dynamics were assessed in vivo by multidetector computed tomography (CT) and blood oxygen level-dependent (BOLD)-MRI. Microvascular architecture was assessed ex vivo with micro-CT. Candidate injury mechanisms were evaluated in kidney tissue by Western blotting and histology. Basal GFR, renal blood flow, and renal cortical perfusion and volume were elevated in the MetS group. Perirenal and kidney tissue fat, proximal-nephron intratubular fluid concentration, and endothelial nitric oxide synthase expression were increased in MetS. GFR levels correlated with tissue triglyceride levels. Elevated spatial density of 20- to 40-μm cortical microvessels was accompanied by mild oxidative stress, inflammation, and with proximal tubular vacuolization. Medullary size and perfusion were relatively preserved, and BOLD-MRI showed intact medullary tubular response to furosemide. Increased GFR in early MetS is associated with renal adiposity and microvascular proliferation, which involve mainly the renal cortex and precede significant activation of oxidative stress and inflammation. Renal adiposity and proliferative microvessels may represent novel therapeutic targets for preserving renal function in early MetS.  相似文献   

13.
Endothelial dysfunction is a hallmark of Type 2 diabetes related to hyperglycemia and oxidative stress. Nitric oxide-dependent vasodilator actions of insulin may augment glucose disposal. Thus endothelial dysfunction may worsen insulin resistance. Intra-arterial administration of vitamin C improves endothelial dysfunction in diabetes. In the present study, we investigated effects of high-dose oral vitamin C to alter endothelial dysfunction and insulin resistance in Type 2 diabetes. Plasma vitamin C levels in 109 diabetic subjects were lower than healthy (36 +/- 2 microM) levels. Thirty-two diabetic subjects with low plasma vitamin C (<40 microM) were subsequently enrolled in a randomized, double-blind, placebo-controlled study of vitamin C (800 mg/day for 4 wk). Insulin sensitivity (determined by glucose clamp) and forearm blood flow in response to ACh, sodium nitroprusside (SNP), or insulin (determined by plethysmography) were assessed before and after 4 wk of treatment. In the placebo group (n = 17 subjects), plasma vitamin C (22 +/- 3 microM), fasting glucose (159 +/- 12 mg/dl), insulin (19 +/- 7 microU/ml), and SI(Clamp) [2.06 +/- 0.29 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)] did not change significantly after placebo treatment. In the vitamin C group (n = 15 subjects), basal plasma vitamin C (23 +/- 2 microM) increased to 48 +/- 6 microM (P < 0.01) after treatment, but this was significantly less than that expected for healthy subjects (>80 microM). No significant changes in fasting glucose (156 +/- 11 mg/dl), insulin (14 +/- 2 microU/ml), SI(Clamp) [2.71 +/- 0.46 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)], or forearm blood flow in response to ACh, SNP, or insulin were observed after vitamin C treatment. We conclude that high-dose oral vitamin C therapy, resulting in incomplete replenishment of vitamin C levels, is ineffective at improving endothelial dysfunction and insulin resistance in Type 2 diabetes.  相似文献   

14.
Hyperlipidemia enhances xanthine oxidase (XO) activity. XO is an important source of reactive oxygen species (ROS). Since ROS are thought to promote atherosclerosis, we hypothesized that XO is involved in the development of atherosclerosis. ApoE(-/-) mice were fed a Western-type (WD) or control diet. In subgroups, tungsten (700 mg/L) was administered to inhibit XO. XO is a secreted enzyme which is formed in the liver as xanthine dehydrogenase (XDH) and binds to the vascular endothelium. High expression of XDH was found in the liver and WD increased liver XDH mRNA and XDH protein expression. WD induced the conversion of XDH to the radical-forming XO. Moreover, WD increased the hepatic expression of CD40, demonstrating activation of hepatic cells. Aortic tissue of ApoE(-/-) mice fed a WD for 6 months exhibited marked atherosclerosis, attenuated endothelium-dependent relaxation to acetylcholine, increased vascular oxidative stress, and mRNA expression of the chemokine KC. Tungsten treatment had no effect on plasma lipids but lowered the plasma XO activity. In animals fed a control diet, tungsten had no effect on radical formation, endothelial function, or atherosclerosis development. In mice fed a WD, however tungsten attenuated the vascular superoxide anion formation, prevented endothelial dysfunction, and attenuated KC mRNA expression. Most importantly, tungsten treatment largely prevented the development of atherosclerosis in the aorta of ApoE(-/-) mice on WD. Therefore, tungsten, potentially via the inhibition of XO, prevents the development of endothelial dysfunction and atherosclerosis in ApoE(-/-) mice on WD.  相似文献   

15.
Although the binding of xanthine oxidase (XO) to glycosaminoglycans (GAGs) results in significant alterations in its catalytic properties, the consequence of XO/GAG immobilization on interactions with clinically relevant inhibitors is unknown. Thus, the inhibition kinetics of oxypurinol for XO was determined using saturating concentrations of xanthine. When XO was bound to a prototypical GAG, heparin-Sepharose 6B (HS6B-XO), the rate of inactivation for uric acid formation from xanthine was less than that for XO in solution (k(inact) = 0.24 versus 0.39 min(-1)). Additionally, the overall inhibition constant (K(i)) of oxypurinol for HS6B-XO was 2-5-fold greater than for free XO (451 versus 85 nm). Univalent electron flux (O(2)(.) formation) was diminished by the binding of XO to heparin from 28.5% for free XO to 18.7% for GAG-immobilized XO. Similar to the results obtained with HS6B-XO, the binding of XO to bovine aortic endothelial cells rendered the enzyme resistant to inhibition by oxypurinol, achieving approximately 50% inhibition. These results reveal that GAG immobilization of XO in both HS6B and cell models substantially limits oxypurinol inhibition of XO, an event that has important relevance for the use of pyrazolo inhibitors of XO in clinical situations where XO and its products may play a pathogenic role.  相似文献   

16.
The purpose of this study was to evaluate the inhibitory effect of renierol, extracted from marine sponge Halicdona.SP., on xanthine oxidase (XO) and its hypouricemic effect in vivo. Renierol and a positive control, allopurinol, were tested for their effects on XO activity by measuring the formation of uric acid and superoxide radical from xanthine. Renierol inhibited XO in a concentration-dependent and competitive manner. IC(50) value was 1.85 microg.ml(-1) through the measuring of uric acid and was 1.36 microg.ml(- 1) through the measuring of superoxide radical. Renierol was found to have an in vivo hypouricemic activity against potassium oxonate-induced hyperuricaemia in mice. After oral administration of renierol at doses of 10, 20 and 30 mg.kg(- 1), there was a significant decrease in the serum urate level (4.08 +/- 0.09 mg.dl(- 1), P < 0.01), (3.47 +/- 0.11 mg.dl(- 1), P < 0.01) and (3.12 +/- 0.08 mg.dl(- 1), P < 0.01), when compared to the hyperuricaemic control (6.74 +/- 0.23 mg.dl(- 1)). Renierol was a potent XO inhibitor with hypouricemic activity in mice.  相似文献   

17.
We have reported that hyperhomocysteinemia (HHcy) evoked by folate depletion increases arterial permeability and stiffness in rats and that low folate without HHcy increases arterial permeability in mice. In this study, we hypothesized that HHcy independently increases arterial permeability and stiffness in mice. C57BL/6J mice that received rodent chow and water [control (Con), n=12] or water supplemented with 0.5% L-methionine (HHcy, n=12) for 18+/-3 wk had plasma homocysteine concentrations of 8+/-1 and 41+/-1 microM, respectively (P<0.05), and similar liver folate (approximately 12+/-2 microg folate/g liver). Carotid arterial permeability, assessed as dextran accumulation using quantitative fluorescence microscopy, was greater in HHcy (3.95+/-0.4 ng.min-1.cm-2) versus Con (2.87+/-0.41 ng.min-1.cm-2) mice (P<0.05). Stress versus strain curves generated using an elastigraph indicated that 1) maximal stress (N/mm2), 2) physiological stiffness (low-strain Young's modulus, mN/mm), and 3) maximal stiffness (high-strain Young's modulus, N/mm) were higher (P<0.05) in aortas from HHcy versus Con mice. Thus, chronic HHcy increases arterial permeability and stiffness. Carotid arterial permeability also was assessed in age-matched C57BL/6J mice before and after incubation with 1) xanthine (0.4 mg/ml)/xanthine oxidase (0.2 mg/ml; X/XO) to generate superoxide anion (O2-) or 50 microM DL-homocysteine in the presence of 2) vehicle, 3) 300 microM diethylamine-NONOate (DEANO; a nitric oxide donor), or 4) 10(-3) M 4,5-dihydroxy-1,3-benzene disulfonic acid (tiron; a nonenzymatic intracellular O2- scavenger). Compared with preincubation values, X/XO and dl-homocysteine increased (P<0.05) permeability by 66+/-11% and 123+/-8%, respectively. DL-Homocysteine-induced increases in dextran accumulation were blunted (P<0.05) by simultaneous incubation with DEANO or tiron. Thus, acute HHcy increases arterial permeability by generating O2- to an extent whereby nitric oxide bioavailability is reduced.  相似文献   

18.
Xanthine oxidase (XO) is a key enzyme which can catalyze xanthine to uric acid causing hyperuricemia in humans. By using the fractionation technique and inhibitory activity assay, an active compound that prevents XO from reacting with xanthine was isolated from wheat leaf. It was identified by the Mass and NMR as 6-aminopurine (adenine). A structure-activity study based on 6-aminopurine was conducted. The inhibition of XO activity by 6-aminopurine (IC(50)=10.89+/-0.13 microM) and its analogues was compared with that by allopurinol (IC(50)=7.82+/-0.12 microM). Among these analogues, 2-chloro-6(methylamino)purine (IC(50)=10.19+/-0.10 microM) and 4-aminopyrazolo[3,4-d] pyrimidine (IC(50)=30.26+/-0.23 microM) were found to be potent inhibitors of XO. Kinetics study showed that 2-chloro-6(methylamino)purine is non-competitive, while 4-aminopyrazolo[3,4-d]pyrimidine is competitive against XO.  相似文献   

19.
Chronic inflammation associated with osteoarthritis (OA) may alter normal vascular responses and contribute to joint degradation. Vascular responses to vasoactive mediators were evaluated in the medial collateral ligament (MCL) of the anterior cruciate ligament (ACL)-deficient knee. Chronic joint instability and progressive OA were induced in rabbit knees by surgical transection of the ACL. Under halothane anesthesia, laser speckle perfusion imaging (LSPI) was used to measure MCL blood flow in unoperated control (n = 12) and 6-wk ACL-transected knees (n = 12). ACh, bradykinin, histamine, substance P (SP), and prostaglandin E(2) (PGE(2)) were applied to the MCL vasculature in topical boluses of 100 microl (dose range 10(-14) to 10(-8) mol). In normal joints, ACh, bradykinin, histamine, and PGE(2) evoked a dilatory response. Substance P caused a biphasic response that was dilatory from 10(-14) to 10(-11) mol and constricting at higher doses. In ACL-deficient knees, ACh, bradykinin, histamine, and SP decreased perfusion, whereas PGE(2) had a biphasic response that decreased perfusion at 10(-14) to 10(-11) mol and was dilatory at higher concentrations. Sodium nitroprusside increased perfusion in resting and phenylephrine-precontracted vessels with no significant differences between ACL-transected and control knees. Femoral artery occlusion and release increased perfusion by 74.3 +/- 11.1% in control knees but only by 25.8 +/- 4.4% in ACL-deficient knees. The altered responsiveness of the MCL vasculature to these inflammatory mediators may indicate endothelial dysfunction in the MCL, which may contribute to the progression and severity of OA and to the adaptation of the joint in an altered mechanical environment.  相似文献   

20.
Xanthine oxidase (XO)-derived superoxide contributes to endothelial dysfunction in humans and animal models of hypercholesterolemia (HC). Since L-arginine supplementation prevents defects in NO signaling, we tested the hypothesis that L-arginine blunts the inhibitory effect of XO on vascular function. Acetylcholine-mediated relaxation was significantly impaired in ring segments of HC rabbits, a response that was associated with an increase in plasma XO activity. L-Arginine treatment of HC rabbits reduced plasma XO and improved endothelial function. L-Arginine also modestly prolonged the lag time for oxidation in isolated lipoprotein samples. These results reveal that the principal action of L-arginine is to protect against the XO-dependent inactivation of NO in arteries of HC rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号