首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We applied high-resolution manometry with spatiotemporal data interpolation and simultaneous videofluoroscopy to normal pharyngeal swallows to correlate specific features in the space-time intraluminal pressure structure with physiological events and normal deglutitive transsphincteric bolus flow to define normal biomechanical properties of the pharyngo-esophageal (PE) segment. Pressures were recorded by microperfused catheter, and the two-dimensional space-time data sets were plotted as isocontours. On these were superimposed bolus trajectories, anatomic segment movements, and hyo-laryngeal trajectories from concurrent videofluoroscopy. Correlation of the highly reproducible space-time-pressure structure with radiographic images confirmed that primary deglutitive PE segment functions (pressure profile, laryngeal elevation, axial sphincter motion, timing of relaxation, contraction) are accurately discernible from single isocontour pressure visualization. Pressure during bolus flow was highly dependent on axial location within PE segment and time instant. The intrabolus pressure domain, corresponding to the space-time region between bolus head and tail trajectories, demonstrated significant bolus volume dependence. High-resolution manometry accurately, comprehensively, and highly reproducibly depicts the PE segment space-time-pressure structure and specific physiological events related to upper esophageal sphincter opening and transsphincteric flow during normal swallowing. Intrabolus pressure variations are highly dependent on position within the PE segment and time.  相似文献   

2.
We present a model of esophageal wall muscle mechanics during bolus transport with which the active and "passive" components of circular muscle tension are separately extracted from concurrent manometric and videofluoroscopic data. Local differential equations of motion are integrated across the esophageal wall to yield global equations of equilibrium which relate total tension within the esophageal wall to intraluminal pressure and wall geometry. To quantify the "passive" (i.e. inactive) length-tension relationships, the model equations are applied to a region of the esophagus in which active muscle contraction is physiologically inhibited. Combining the global equations with space-time-resolved intraluminal pressure measured manometrically and videofluoroscopic geometry data, the passive model is used to separate active and "passive" components of esophageal muscle tension during bolus transport. The model is of general applicability to probe basic muscle mechanics including the space-time stimulation of circular muscle, the relationship between longitudinal muscle tension and longitudinal muscle shortening, and the contribution of the collagen matrix surrounding muscle fibers to passive tension during normal human esophageal bolus transport and in pathology. Example calculations of normal esophageal function are given where active tone is found to extend only over a short intrabolus segment near the bolus tail and segmental regions of active muscle squeeze are demonstrated.  相似文献   

3.
We analyzed local longitudinal shortening by combining concurrent ultrasonography and manometry with basic principles of mechanics. We applied the law of mass conservation to quantify local axial shortening of the esophageal wall from ultrasonically measured cross-sectional area concurrently with measured intraluminal pressure, from which correlations between local contraction of longitudinal and circular muscle are inferred. Two clear phases of local longitudinal shortening were observed during bolus transport. During luminal filling by bolus fluid, the muscle layer distends and the muscle thickness decreases in the absence of circular or longitudinal muscle contraction. This is followed by local contraction, first in longitudinal muscle, then in circular muscle. Maximal longitudinal shortening occurs nearly coincidently with peak intraluminal pressure. Longitudinal muscle contraction begins before and ends after circular muscle contraction. Larger longitudinal shortening is correlated with higher pressure amplitude, suggesting that circumferential contractile forces are enhanced by longitudinal muscle shortening. We conclude that a peristaltic wave of longitudinal muscle contraction envelops the wave of circular muscle contraction as it passes through the middle esophagus, with peak longitudinal contraction aligned with peak circular muscular contraction. Our results suggest that the coordination of the two waves may be a physiological response to the mechanical influence of longitudinal shortening, which increases contractile force while reducing average muscle fiber tension by increasing circular muscle fiber density locally near the bolus tail.  相似文献   

4.
The fed human stomach displays regular peristaltic contraction waves that originate in the proximal antrum and propagate to the pylorus. High-resolution concurrent manometry and magnetic resonance imaging (MRI) studies of the stomach suggest a primary function of antral contraction wave (ACW) activity unrelated to gastric emptying. Detailed evaluation is difficult, however, in vivo. Here we analyse the role of ACW activity on intragastric fluid motions, pressure, and mixing with computer simulation. A two-dimensional computer model of the stomach was developed with the 'lattice-Boltzmann' numerical method from the laws of physics, and stomach geometry modelled from MRI. Time changes in gastric volume were specified to match global physiological rates of nutrient liquid emptying. The simulations predicted two basic fluid motions: retrograde 'jets' through ACWs, and circulatory flow between ACWs, both of which contribute to mixing. A well-defined 'zone of mixing', confined to the antrum, was created by the ACWs, with mixing motions enhanced by multiple and narrower ACWs. The simulations also predicted contraction-induced peristaltic pressure waves in the distal antrum consistent with manometric measurements, but with a much lower pressure amplitude than manometric data, indicating that manometric pressure amplitudes reflect direct contact of the catheter with the gastric wall. We conclude that the ACWs are central to gastric mixing, and may also play an indirect role in gastric emptying through local alterations in common cavity pressure.  相似文献   

5.
Propulsion of a bolus through the upper esophageal sphincter (UES) is driven by a pressure drop in the direction of flow against frictional resisting force. Basic mechanics suggest that the axial rate of drop in intrabolus pressure (IBP), i.e., the intrabolus pressure gradient (IBPG), should be locally sensitive to abnormal constriction. We sought to quantify space-time patterns of IBP and IBPG that correlate with pathological disruption to transsphincteric bolus transport. High-resolution high-fidelity perfused manometry was applied concurrent with videofluoroscopy in 6 healthy controls and 10 patients with restricted UES opening and 4 bolus volumes. Pressures were interpolated spatially and displayed as space-time isocontours with bolus head and tail trajectories superimposed to identify the IBP domain. IBP and IBPG were averaged over an approximately steady period of transsphincteric flow. The axial location and magnitude of maximum IBPG were quantified for each swallow relative to the location of the abnormal restriction. We found that average hypopharyngeal IBP and locally maximal IBPG were significantly higher in the patient group (P < 0.001), whereas the maximum IBPG was insensitive to bolus volume, and the locations of maximum IBPG in the patient group were well correlated with axial locations of maximal UES constriction (r = 0.84, P < 0.01). Space-time structure of IBP and IBPG correlated qualitatively with swallow dysfunction. Because IBPG reflects pressure force driving the bolus against frictional force in the UES, IBPG reflects local changes in frictional resistance from pathological constriction during bolus flow. Consequently, the location and magnitude of IBPG reflect the existence and location of abnormal constriction, and IBP and IBPG structure reflect decompensation of the pharyngeal swallow.  相似文献   

6.
Manometric assembly diameter is a major limitation on the number of perfused manometric recording points for recordings from the sphincter of Oddi (SO). We evaluated novel polyimide manometric assemblies whereby four recording channels were incorporated in an overall assembly diameter of 0.8 mm. Over the very low range of perfusion rates tested (0.005-0.04 ml/min), the assemblies had pressure offsets attributable to water perfusion from 2 to 23 mmHg and pressure rise rates from 20 to 163 mmHg/s. In six anesthetized Australian brush-tailed possums, manometric recordings from the SO showed a significant reduction in the recorded peak amplitude of pressure waves with perfusion rates below 0.02 ml/min. The pressure profile of the sphincter was found to be asymmetric, and phasic wave propagation patterns were complex (antegrade 35.6%, "mixed" 64.4%). In conclusion, accurate multipoint SO manometry in the possum can be performed with micromanometric assemblies at very low perfusion rates to give a more complete understanding of SO mechanics. These methods are also potentially applicable to perfusion manometry in other small laboratory animals such as mice.  相似文献   

7.
The relative contributions to gastric emptying from common cavity antroduodenal pressure difference ("pressure pump") vs. propagating high-pressure waves in the distal antrum ("peristaltic pump") were analyzed in humans by high-resolution manometry concurrently with time-resolved three-dimensional magnetic resonance imaging during intraduodenal nutrient infusion at 2 kcal/min. Gastric volume, space-time pressure, and contraction wave histories in the antropyloroduodenal region were measured in seven healthy subjects. The subjects fell into two distinct groups with an order of magnitude difference in levels of antral pressure activity. However, there was no significant difference in average rate of gastric emptying between the two groups. Antral pressure history was separated into "propagating high-pressure events" (HPE), "nonpropagating HPEs," and "quiescent periods." Quiescent periods dominated, and average pressure during quiescent periods remained unchanged with decreasing gastric volume, suggesting that common cavity pressure levels were maintained by increasing wall muscle tone with decreasing volume. When propagating HPEs moved to within 2-3 cm of the pylorus, pyloric resistance was found statistically to increase with decreasing distance between peristaltic waves and the pylorus. We conclude that transpyloric flow tends to be blocked when antral contraction waves are within a "zone of influence" proximal to the pylorus, suggesting physiological coordination between pyloric and antral contractile activity. We further conclude that gastric emptying of nutrient liquids is primarily through the "pressure pump" mechanism controlled by pyloric opening during periods of relative quiescence in antral contractile wave activity.  相似文献   

8.
Impedance monitoring (Imp) measures bolus transit. Combining Imp with manometry (EM) allows the effect of contractile patterns on transit to be assessed. The objective of this study is to identify bolus transit patterns in normal subjects, correlate Imp findings with the gold standard barium esophagram (Ba), and compare bolus transit with concomitant EM findings. Simultaneous Ba-Imp-EM was performed for 2 min in 15 normal volunteers (women, 11; age, 43 yr). Combined impedance-pressure sites were 5, 10, 15, 20 cm above the lower esophageal sphincter (LES). Boluses (10 ml) of 45% barium mixed with 0.9% NaCl were swallowed at > or = 20-s intervals (5-6 swallows/subject). Imp and Ba showed three bolus transit patterns, and the two methods were in agreement on the pattern type in 97% (83/86) of swallows. Normal bolus transit was found in 73% (61/83), and each had normal peristalsis and contraction amplitude. Stasis in the proximal esophagus occurred in 7 of 83 swallows despite normal manometric parameters in 4 of 7 swallows. Retrograde escape of a residue of incompletely cleared bolus from just above the LES to the site 5 cm above occurred in 14 of 83 swallows. Retrograde escape was triggered by the next swallow, occurred despite normal manometric parameters, and did not occur if the swallow interval was >30 s. In 55% (47/86) of swallows, air accumulated in the distal esophagus and persisted there for a mean of 3.6 s until cleared into the stomach. We conclude that impedance monitoring is a valid transit test and describe bolus transit patterns in normal subjects for comparison with patients with esophageal motility disorders.  相似文献   

9.
Intraluminal impedance recording has made it possible to record fluid transport across the pylorus during the interdigestive state without filling the stomach. During antral phase II, fluid transport occurs with and without manometrically detectable antral contraction. Our aim was to investigate the relationships between ultrasonographic patterns of antral contraction, manometric pressure waves, and transpyloric fluid transport during antral phase II. Antral wall movements were recorded by real-time ultrasound (US) in eight healthy volunteers (mean age 24 +/- 7 yr) during 17 +/- 5 min of antral phase II. Concomitantly, a catheter positioned across the pylorus, monitored by transmucosal potential difference measurement, recorded five impedance signals (1 antral, 1 pyloric, and 3 duodenal) and six manometric signals (2 antral, 1 pyloric, and 3 duodenal). Antral contractions detected by US at the level of the two antral impedance electrodes were classified according to their association with a pyloric opening or a duodenal contraction. Transpyloric liquid transport events (impedance drop of >40% of the baseline with an antegrade or retrograde propagation) and manometric pressure waves (amplitude and duration) were identified during the whole study and especially during each period of US antral contraction. A total of 110 antral contractions was detected by US. Of these, 79 were also recorded by manometry. Fluid transport across the pylorus was observed in 70.9% of the US-detected antral contractions. Pyloric opening was observed in 98.6% of the contractions associated with fluid transport compared with 50% in the absence of fluid transport (P < 0.05). Antral contractions associated with fluid transport were significantly (P < 0.05) more often propagated to the duodenum (92%) than those without fluid transport (53%). Pressure waves associated with fluid transport were of higher amplitude (208 mmHg, range 22-493) and longer duration (7 s, range 2.5-13.5 s) than those not associated with fluid transport (102 mmHg, range 18-329 mmHg, and 4.1 s, range 2-8.5 s; P < 0.05). The propagation of the antral contractions in the duodenum in US was always associated with a pyloric opening, whereas only 8 of the 25 contractions without duodenal propagation were associated with a pyloric opening (P < 0.05). The presence of duodenal contractile activity before the onset of an antral contraction in US was always accompanied by pyloric opening and with fluid transport in 93.3%, compared with 56.8% in its absence (P < 0.05). In antral phase II, US is the most sensitive technique to detect antral contractions. Transpyloric fluid transport observed in relation to antral contractions occurs mainly in association with contractions of high amplitude and long duration and is associated with pyloric opening and/or duodenal propagation.  相似文献   

10.
Whereas bolus transport along the esophagus results from peristaltic contractions of the circular muscle layer, it has been suggested that local shortening of the longitudinal muscle layer concentrates circular muscle fibers in the region where the highest contractile pressures are required. Here we analyze the mechanical consequences of local longitudinal shortening (LLS) through a mathematical model based on lubrication theory. We find that local pressure and shear stress in the contraction zone are greatly reduced by the existence of LLS. In consequence, peak contractile pressure is reduced by nearly 2/3 at physiological LLS, and this reduction is greatest when peak in LLS is well aligned with peak contractile pressure. We conclude that a peristaltic wave of local longitudinal muscle contraction coordinated with the circular muscle contraction wave has both a great physiological advantage (concentrating circular muscle fibers), and a great mechanical advantage (reducing the level of contractile force required to transport the bolus), which combine to greatly reduce circular muscle tone during esophageal peristalsis.  相似文献   

11.
Intraluminal impedance, a nonradiological method for assessing bolus flow within the gut, may be suitable for investigating pharyngeal disorders. This study evaluated an impedance technique for the detection of pharyngeal bolus flow during swallowing. Patterns of pharyngoesophageal pressure and impedance were simultaneously recorded with videofluoroscopy in 10 healthy volunteers during swallowing of liquid, semisolid, and solid boluses. The timing of bolus head and tail passage recorded by fluoroscopy was correlated with the timing of impedance drop and recovery at each recording site. Bolus swallowing produced a drop in impedance from baseline followed by a recovery to at least 50% of baseline. The timing of the pharyngeal and esophageal impedance drop correlated with the timing of the arrival of the bolus head. In the pharynx, the timing of impedance recovery was delayed relative to the timing of clearance of the bolus tail. In contrast, in the upper esophageal sphincter (UES) and proximal esophagus, the timing of impedance recovery correlated well with the timing of clearance of the bolus tail. Impedance-based estimates of pharyngoesophageal bolus clearance time correlated with true pharyngoesophageal bolus clearance time. Patterns of intraluminal impedance recorded in the pharynx during bolus swallowing are therefore more complex than those in the esophagus. During swallowing, mucosal contact between the tongue base and posterior pharyngeal wall prolongs the duration of pharyngeal impedance drop, leading to overestimation of bolus tail timing. Therefore, we conclude that intraluminal impedance measurement does not accurately reflect the bolus transit in the pharynx but does accurately reflect bolus transit across the UES and below.  相似文献   

12.
A number of studies show a close temporal relationship between the rate of change in muscle thickness as detected by high-frequency intraluminal ultrasonography (HFIUS) and intraluminal pressure measured by manometry. There is a marked variability in esophageal contraction amplitude from one swallow to another at a given level in the esophagus and along the length of the esophagus. Furthermore, peristaltic pressures are higher in the distal compared with the proximal esophagus. The goal of this study was to evaluate the relationship between the baseline and peak muscle thickness and the contraction amplitude during swallow-induced contractions along the length of the esophagus. Fifteen normal subjects were studied using simultaneous esophageal pressures and HFIUS or HFIUS alone. Recordings were made during baseline and standardized swallows in the lower esophageal sphincter (LES) and at 2, 4, 6, 8, and 10 cm above the LES. HFIUS images were digitized, and esophageal muscle thickness and peak contraction amplitudes were measured. In the resting state, muscle thickness is higher in the LES compared with the rest of the esophagus. Baseline muscle thickness is also significantly higher at 2 cm vs. 10 cm above the LES. In a given subject and among different subjects, there is a good relationship between peak muscle thickness and peak peristaltic pressures (r = 0.55) at all sites along the length of the esophagus. The positive correlation between pressure and muscle thickness implies that the mean circumferential wall stress is fairly uniform from one swallow to another, irrespective of the contraction amplitude.  相似文献   

13.
The vastly enhanced spatial resolution of high-resolution manometry (HRM) makes it possible to simultaneous monitor contractile activity over the entire length of the esophagus. The aim of this investigation was to define the essential features of esophageal peristalsis in novel HRM paradigms and establish their normative values. Ten 5-ml water swallows were recorded in each of 75 asymptomatic controls with a solid-state manometric assembly incorporating 36 circumferential sensors spaced at 1-cm intervals positioned to record from the hypopharynx to the stomach. The data set was then subjected to intensive computational analysis to distill out the essential characteristics of normal peristalsis. Esophageal peristalsis was conceptualized in terms of a proximal contraction, a distal contraction, and a transition zone separating the two. Each contractile segment was quantified in length and then normalized among subjects to summarize focal fluctuation of contractile amplitude and propagation velocity. Furthermore, the temporal and spatial characteristics of the transition zone separating the proximal and distal contraction were quantified. For each paradigm, graphics were developed, establishing median values along with the 5th to 95th percentile range of observed variation. In addition, the synchronization between peristalsis and esophagogastric junction relaxation was analyzed using a novel concept of the outflow permissive pressure gradient. We performed a detailed analysis of esophageal peristalsis aimed at quantifying its essential features and, in so doing, devised new paradigms for the quantification of peristaltic function that will hopefully optimize the utility of HRM in clinical and investigative studies.  相似文献   

14.
The current understanding is that longitudinal muscle contraction begins before and outlasts circular muscle contraction during esophageal peristalsis in normal subjects. The goal of our study was to reassess the relationship between the contractility of two muscle layers using novel ways to look at the muscle contraction. We studied normal subjects using synchronized high-frequency ultrasound imaging and manometry. Swallow-induced peristalsis was recorded at 5 and 10 cm above the lower esophageal sphincter (LES). Ultrasound (US) images were analyzed for muscle cross-sectional area (CSA) and circularity index of the esophagus during various phases of esophageal contraction. A plot of the M mode US image, muscle CSA, and esophageal circularity index was developed to assess the temporal correlation between various parameters. The muscle CSA wave began before and lasted longer than the contraction pressure wave at both 5 and 10 cm above the LES. M mode US images revealed that the onset of muscle CSA wave was temporally aligned with the onset of lumen collapse. The peak muscle CSA occurred in close proximity with the peak pressure wave. The esophagus started to become more circular (decrease in circularity index) with the onset of the muscle CSA wave. The circularity index and muscle CSA returned to the baseline at approximately the same time. In conclusion, the onset of lumen collapse and return of circularity index of the esophagus are likely to be the true markers of the onset and end of circular muscle contraction. Circular and longitudinal muscle layers of the esophagus contract in a precise synchronous fashion during peristalsis in normal subjects.  相似文献   

15.
Deglutitive inhibition attenuates ongoing esophageal contractions if swallows are separated by short time intervals. This study aimed to determine whether esophageal shortening, mediated by longitudinal muscle, was similarly affected. Eight healthy subjects with two distal esophageal segments demarcated by mucosal clips and manometric recording sites positioned within those segments underwent concurrent manometry and fluoroscopy. Peristaltic amplitude and change in distal segment lengths were quantified during single swallows, paired swallows separated by progressively prolonged intervals, and a series of rapid repetitive swallows. During grouped swallows, deglutitive inhibition with complete attenuation of both the manometric contraction and segment shortening was evident with short-interval swallows and rapid-sequence swallows. No inhibition of either was evident with long-interval pairs. With intermediate interswallow intervals, the occurrence and degree of deglutitive inhibition between peristaltic amplitude and segment shortening were closely correlated. Deglutitive inhibition affects both the longitudinal and circular muscle layers of the esophageal wall, and the occurrence of inhibition evident in one layer is strongly correlated with the other.  相似文献   

16.
Successful esophageal emptying depends on the generation of a sustained intrabolus pressure (IBP) sufficient to overcome esophagogastric junction (EGJ) obstruction. Our aim was to develop a manometric analysis paradigm that describes the bolus driving pressure difference and the flow permissive time for esophageal bolus transit. Twenty normal subjects were studied with a 36-channel manometry assembly (1-cm spacing) during two 5- and one 10-ml barium swallows and concurrent fluoroscopy. Bolus domain pressure plots were generated by plotting bolus domain pressure (BDP) and EGJ relaxation pressure. BDP was defined as the pressure midway between the peristaltic ramp-up and the proximal margin of the EGJ. The flow permissive time was defined as the period where the BDP was > or = EGJ relaxation pressure. The mean BDP was 11.7 +/- 1.0 mmHg (SE), and the mean flow permissive time was 3.9 +/- 0.4 s for 5-ml swallows in normal controls. The mean BDP difference during flow was 4.0 +/- 1.0 mmHg. There was no significant difference in the fluoroscopic transit time and the flow permissive time calculated from the BDP plots (5 ml: fluoroscopy 3.4 +/- 0.2 s; BDP 3.9 +/- 0.4 s, P > 0.05). BDP plots provide a reliable measurement of IBP and its relationship with EGJ relaxation. The time available for flow can be readily delineated from this analysis, and the driving pressure responsible for flow can be accurately described and quantified. This may help predict abnormal bolus transit and the underlying mechanical properties of the EGJ.  相似文献   

17.
Based on a fully coupled computational model for esophageal transport, we analyzed the role of the mucosa (including the submucosa) in esophageal bolus transport and how bolus transport is affected by mucosal stiffness. Two groups of studies were conducted using a computational model. In the first group, a base case that represents normal esophageal transport and two hypothetical cases were simulated: (1) esophageal mucosa replaced by muscle and (2) esophagus without mucosa. For the base case, the geometric configuration of the esophageal wall was examined and the mechanical role of mucosa was analyzed. For the hypothetical cases, the pressure field and transport features were examined. In the second group of studies, cases with mucosa of varying stiffness were simulated. Overall transport characteristics were examined, and both pressure and geometry were analyzed. Results show that a compliant mucosa helped accommodate the incoming bolus and lubricate the moving bolus. Bolus transport was marginally achieved without mucosa or with mucosa replaced by muscle. A stiff mucosa greatly impaired bolus transport due to the lowered esophageal distensibility and increased luminal pressure. We conclude that mucosa is essential for normal esophageal transport function. Mechanically stiffened mucosa reduces the distensibility of the esophagus by obstructing luminal opening and bolus transport. Mucosal stiffening may be relevant in diseases characterized by reduced esophageal distensibility, elevated intrabolus pressure, and/or hypertensive muscle contraction such as eosinophilic esophagitis and jackhammer esophagus.  相似文献   

18.
Assessment of patterns of flow in the small bowel is difficult. Multiple intraluminal impedance has been recently used for study of flow dynamics in the esophagus. Our aims were 1) to validate multiple intraluminal impedance by correlating impedance events with intestinal flow as detected by fluoroscopy and 2) to determine intestinal flow patterns in the fasting and postprandial period and their correspondence with manometry. First, six healthy subjects underwent simultaneous video-fluoroscopic, manometric, and impedance recording from the duodenum. Videofluoroscopy was used to validate impedance patterns corresponding with barium flow in the fasting and postprandial periods. Next, 16 healthy subjects underwent prolonged simultaneous recording of impedance and manometry in both periods. Most flow events were short (10 cm or less), with antegrade flow being the most common. Correspondence between impedance and videofluoroscopy increased with increasing length of barium flow. Impedance corresponded better with flow, at any distance, than manometry. However, impedance and manometric events, when analyzed separately as index events, always corresponded with fluoroscopic flow. The fasting and postprandial periods showed comparable patterns of flow, with frequent, highly propulsive manometric and impedance sequences. Motility index was positively and significantly associated with length of impedance events. Phase 3 of the migrating motor complex could be easily recognized by impedance. Multiple intraluminal impedance can detect intestinal flow events and corresponds better with fluoroscopic flow than manometry.  相似文献   

19.
A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3-5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons.  相似文献   

20.
We previously showed, in normal subjects, a positive correlation between the esophageal contraction amplitude and peak muscle thickness. The goal of this study was to determine the relationship between esophageal muscle thickness and contraction amplitude in patients with high-amplitude peristaltic and simultaneous contractions. Eleven patients with high-amplitude peristaltic contractions, 8 with diffuse esophageal spasm (DES), 7 with nonspecific (NS) motor disorder of the esophagus, and 10 normal subjects were studied using simultaneous pressure and ultrasound imaging. Pressure was recorded by manometry and ultrasound imaging with a high-frequency ultrasound probe catheter. Recordings were performed in the lower esophageal sphincter (LES) and at 2, 4, 6, 8, and 10 cm above the LES during resting state and swallow-induced contractions. Baseline esophageal muscle was thicker in the distal, compared with the proximal esophagus both in normal subjects and patient groups. Patients with DES and nutcracker esophagus (NC) have a higher baseline muscle thickness compared with normal and NS patients. Correlation between the peak pressure and the peak muscle thickness was weaker in patients with NC and DES compared with normal subjects and patients with NS. Whereas normal subjects have good correlation between delta (difference between peak and baseline) muscle thickness and peak pressures, this relationship was absent in patients with NC and DES. Increase in contraction amplitude in patients with NC and DES was associated with an increase in baseline thickness of esophageal muscularis propria. Increase in baseline thickness was specific to patients with spastic motor disorders and was not seen in patients with NS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号