首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long branches in a true phylogeny tend to disrupt hierarchical character covariation (phylogenetic signal) in the distribution of traits among organisms. The distortion of hierarchical structure in character-state matrices can lead to errors in the estimation of phylogenetic relationships and inconsistency of methods of phylogenetic inference. Examination of trees distorted by long-branch attraction will not reveal the identities of problematic taxa, in part because the distortion can mask long branches by reducing inferred branch lengths and through errors in branching order. Here we present a simple method for the detection of taxa whose placement in evolutionary trees is made difficult by the effects of long-branch attraction. The method is an extension of a tree-independent conceptual framework of phylogenetic data exploration (RASA). Taxa that are likely to attract are revealed because long branches leave distinct footprints in the distribution of character states among taxa, and these traces can be directly observed in the error structure of the RASA regression. Problematic taxa are identified using a new diagnostic plot called the taxon variance plot, in which the apparent cladistic and phenetic variances contributed by individual taxa are compared. The procedure for identifying long edges employs algorithms solved in polynomial time and can be applied to morphological, molecular, and mixed characters. The efficacy of the method is demonstrated using simulated evolution and empirical evidence of long branches in a set of recently published sequences. We show that the accuracy of evolutionary trees can be improved by detecting and combating the potentially misleading influences of long-branch taxa.  相似文献   

2.
Hypothetical Ancestors and Rooting in Cladistic Analysis   总被引:1,自引:0,他引:1  
Most hypothetical ancestors that are used to root trees in cladistic analyses summarize character-state information in one or more outgroup taxa. Nonetheless, hypothetical ancestors also provide a means of rooting trees using the ontogenetic and paleontological methods of polarizing character transformations, and for incorporating the inferences of more than one of these methods into a single analysis. However, the use of one hypothetical ancestor that combines inferences based on outgroup comparison with those based on other methods of polarizing character transformations to root a cladogram is invalid. Inferences regarding plesiomorphic character states based on outgroup comparison apply to the outgroup node, whereas inferences based on either the ontogenetic or paleontological method apply to the ingroup node. These inferences cannot be combined into a single hypothetical construct. A hypothetical ancestor based on outgroup information is included in the data matrix and used to root the resulting network; however, because this ancestor places potentially problematic constraints on the analysis, the use of actual outgroup taxa is preferable in most instances. Correct use of a hypothetical ancestor inferred with the ontogenetic and paleontological methods involves the Lundberg method in which the shortest ingroup network is rooted at the internode to which the hypothetical ancestor attaches most parsimoniously. Because inferences of polarity based on outgroup comparison cannot be combined directly with those based on other polarization methods, the synthesis of information from all three methods in a single tree must involve taxonomic congruence.  相似文献   

3.
On RASA   总被引:2,自引:1,他引:1  
Relative Apparent Synapomorphy Analysis (RASA) was recently proposed as a way to measure phylogenetic signal, choose "optimal" outgroups, find long branches, and eliminate long-branch attraction. In this paper it is shown with simple examples that RASA has several problems. The null regression model used by RASA to measure phylogenetic signal does not have a straightforward relation to phylogenetic information. RASA detects long branches, but does not discriminate between long branches that mislead an analysis and those that do not. Rooted RASA, which is used for "optimal outgroup analysis," is shown to be an inappropriate measure of "+esiomorphy content".  相似文献   

4.
Optimal outgroup analysis   总被引:8,自引:0,他引:8  
We present and critically examine a statistical criterion for the selection of outgroup taxa for rooting evolutionary trees. The criterion is the amount of phylogenetic signal for the ingroup when the states of the candidate outgroup taxa are assumed to be plesiomorphic relative to the ingroup for the purpose of measuring plesiomorphy content of the outgroup taxon. A statistical measure of rooted, ingroup signal was subjected to a suite of critical tests which indicate that it provides a proxy measure of plesiomorphy content. As the evolutionary distance between the ingroup ancestral node and outgroup taxa increases, the tree-independent measure of signal decreases, tracking the decay in plesiomorphy content and the increase in convergence to the ingroup states. We show that a priori generalizations about optimal outgroup taxon sampling strategies are likely to be misleading, and that testing for the suitability of available outgroup taxon sampling in specific instances is warranted. Software for optimal outgroup analysis is available.  相似文献   

5.
Outgroup sampling is a fundamental step in the design of phylogenetic analyses, independent of optimality criterion, taxonomic group, or source of evidence. Studies have demonstrated the efficient analysis of many thousands of terminals, all of which could be included in any empirical investigation, yet outgroup samples typically include only a small number of terminals. Most discussion of outgroup sampling centers on employing “correct” or “appropriate” outgroup terminals to increase “accuracy” or “reliability” by preventing “errors” such as long branch attraction and “incorrect” ingroup rooting. As an alternative, I develop a theory of outgroup sampling grounded in the logic of scientific discovery, whereby the objective is to test nested hypotheses of ingroup topology and character‐state transformation as severely as possible by incorporating outgroup terminals in unconstrained, simultaneous analysis, using background knowledge to select the terminals that have the greatest chance of refuting those hypotheses. This framework provides a logical basis for selecting outgroup taxa but does not provide grounds for limiting the outgroup sample, given that, ceteris paribus, testability and explanatory power increase with the inclusion of additional terminals. Therefore, I propose the ancillary procedure of successively expanding the outgroup sample until ingroup hypotheses become stable (insensitive) to increased sampling, with each expansion guided by the scientific objectives of outgroup sampling. This is a heuristic procedure that does not prevent more outgroup terminals from being sampled or guarantee that ingroup hypotheses will remain insensitive to further outgroup expansion, and it has no bearing on the objective support of a given hypothesis. Nevertheless, it provides an objective, empirical basis for limiting outgroup sampling in a given research cycle. I illustrate this procedure by examining the effect of successive outgroup expansion on the relationships among the poison frog genera Adelphobates, Dendrobates, and Oophaga.  相似文献   

6.
We have developed a new approach to the measurement of phylogenetic signal in character state matrices called relative apparent synapomorphy analysis (RASA). RASA provides a deterministic, statistical measure of natural cladistic hierarchy (phylogenetic signal) in character state matrices. The method works by determining whether a measure of the rate of increase of cladistic similarity among pairs of taxa as a function of phenetic similarity is greater than a null equiprobable rate of increase. Our investigation of the utility and limitations of RASA using simulated and bacteriophage T7 data sets indicates that the method has numerous advantages over existing measures of signal. A first advantage is computational efficiency. A second advantage is that RASA employs known methods of statistical inference, providing measurable sensitivity and power. The performance of RASA is examined under various conditions of branching evolution as the number of characters, character states per character, and mutations per branch length are varied. RASA appears to provide an unbiased and reliable measure of phylogenetic signal, and the general approach promises to be useful in the development of new techniques that should increase the rigor and reliability of phylogenetic estimates.   相似文献   

7.
A review of long-branch attraction   总被引:25,自引:1,他引:24  
The history of long‐branch attraction, and in particular methods suggested to detect and avoid the artifact to date, is reviewed. Methods suggested to avoid LBA‐artifacts include excluding long‐branch taxa, excluding faster evolving third codon positions, using inference methods less sensitive to LBA such as likelihood, the Aguinaldo et al. approach, sampling more taxa to break up long branches and sampling more characters especially of another kind, and the pros and cons of these are discussed. Methods suggested to detect LBA are numerous and include methodological disconcordance, RASA, separate partition analyses, parametric simulation, random outgroup sequences, long‐branch extraction, split decomposition and spectral analysis. Less than 10 years ago it was doubted if LBA occurred in real datasets. Today, examples are numerous in the literature and it is argued that the development of methods to deal with the problem is warranted. A 16 kbp dataset of placental mammals and a morphological and molecular combined dataset of gall waSPS are used to illustrate the particularly common problem of LBA of problematic ingroup taxa to outgroups. The preferred methods of separate partition analysis, methodological disconcordance, and long branch extraction are used to demonstrate detection methods. It is argued that since outgroup taxa almost always represent long branches and are as such a hazard towards misplacing long branched ingroup taxa, phylogenetic analyses should always be run with and without the outgroups included. This will detect whether only the outgroup roots the ingroup or if it simultaneously alters the ingroup topology, in which case previous studies have shown that the latter is most often the worse. Apart from that LBA to outgroups is the major and most common problem; scanning the literature also detected the ill advised comfort of high support values from thousands of characters, but very few taxa, in the age of genomics. Taxon sampling is crucial for an accurate phylogenetic estimate and trust cannot be put on whole mitochondrial or chloroplast genome studies with only a few taxa, despite their high support values. The placental mammal example demonstrates that parsimony analysis will be prone to LBA by the attraction of the tenrec to the distant marsupial outgroups. In addition, the murid rodents, creating the classic “the guinea‐pig is not a rodent” hypothesis in 1996, are also shown to be attracted to the outgroup by nuclear genes, although including the morphological evidence for rodents and Glires overcomes the artifact. The gall wasp example illustrates that Bayesian analyses with a partition‐specific GTR + Γ + I model give a conflicting resolution of clades, with a posterior probability of 1.0 when comparing ingroup alone versus outgroup rooted topologies, and this is due to long‐branch attraction to the outgroup. © The Willi Hennig Society 2005.  相似文献   

8.
Considerable confusion remains among theoreticians and practicioners of phylogenetic science on the use of outgroup taxa. Here, we show that, despite claims to the contrary, details of the optimal ingroup topology can be changed by switching outgroup taxa. This has serious implications for phylogenetic accuracy. We delineate between the process of outgroup selection and the various possible processes involved in using an outgroup taxon after one has been selected. Criteria are needed for the determination that particular outgroup taxa do not reduce the accuracy of evolutionary tree topologies and inferred character state transformations. We compare previous results from a sensitivity bootstrap analysis of the mitochondrial cytochromebphylogenetic relationships among whales to the results of a Bremer support sensitivity analysis and of a recently developed application of RASA theory to the question of putative outgroup taxon plesiomorphy content.  相似文献   

9.
The 567-terminal analysis of atpB, rbcL, and 18S rDNA was used as an empirical example to test the use of amino acid vs. nucleotide characters for protein-coding genes at deeper taxonomic levels. Nucleotides for atpB and rbcL had 6.5 times the amount of possible synapomorphy as amino acids. Based on parsimony analyses with unordered character states, nucleotides outperformed amino acids for all three measures of phylogenetic signal used (resolution, branch support, and congruence with independent evidence). The nucleotide tree was much more resolved than the amino acid tree, for both large and small clades. Nearly twice the percentage of well-supported clades resolved in the 18S rDNA tree were resolved using nucleotides (91.8%) relative to amino acids (49.2%). The well-supported clades resolved by both character types were much better supported by nucleotides (98.7% vs. 83.8% average jackknife support). The faster evolving nucleotides with a smaller average character-state space outperformed the slower evolving amino acids with a larger average character-state space. Nucleotides outperformed amino acids even with 90% of the terminals deleted. The lack of resolution on the amino acid trees appears to be caused by a lack of congruence among the amino acids, not a lack of replacement substitutions.  相似文献   

10.
Non-random distributions of missing data are a general problem for likelihood-based statistical analyses, including those in a phylogenetic context. Extensive non-randomly distributed missing data are particularly problematic in supermatrix analyses that include many terminals and/or loci. It has been widely reported that missing data can lead to loss of resolution, but only very rarely create misleading or otherwise unsupported results in a parsimony context. Yet this does not hold for all parametric-based analyses because of their assumption of homogeneity across characters and lineages, which can lead to both long-branch attraction and long-branch repulsion. Contrived examples were used to demonstrate that non-random distributions of missing data, even without rate heterogeneity among characters and a well fitting model, can provide misleading likelihood-based topologies and branch-support values that are radically unstable based on slight modifications to character sampling. The same can occur despite complete absence of parsimony-informative characters. Otherwise unsupported resolution and high branch support for these clades were found to occur frequently in 22 empirical examples derived from a published supermatrix. Partitioning characters based on the distribution of missing data helped to decrease, but did not eliminate, these artifacts. These artifacts were exacerbated by low quality tree searches, particularly when holding only a single optimal tree that must be fully resolved.  相似文献   

11.
A character of special interest in evolutionary studies is usually optimized on a phylogenetic tree, with or without the outgroups employed in that analysis. Both practices are never justified and look like arbitrary choices. Focusing on one example, we draw the conclusion that authors retain or remove outgroups depending on the way these outgroups sample the diversity of states of the character(s) of special interest. The topology without outgroups is often used by authors when different outgroup taxa non‐exhaustively sample the different states of the character of interest outside of the ingroup. This can make the analysis incoherent, because its different steps are not based on the same data matrix (outgroups are removed in the last step). It can provide several incoherent and possibly different patterns for a same character of interest, one issuing from the first step of phylogeny construction and the other resulting from the a posteriori optimization on the truncated topology. Phylogenetic analyses should be designed to minimize this problem, selecting outgroup and ingroup taxa whose diversity of character states is needed for reconstructing the evolutionary history of the character of interest. © The Willi Hennig Society 2004.  相似文献   

12.
外群选择对隧蜂科(膜翅目:蜜蜂总科)系统重建的影响   总被引:1,自引:0,他引:1  
外群用于给树附根和推断祖先性状状态。通常,来自内群的姐妹群中的多个分类单元被共同选择作为外群。为了在经验上验证这一方法, 我们采用了3种外群选择策略: 姐妹群中的单一分类单元, 姐妹群中的多个分类单元和连续姐妹群中的多个分类单元。以隧蜂科(膜翅目: 蜜蜂总科)的系统发育重建为例, 我们评估了这3种策略对树拓扑结构的影响, 包括最大似然树、 最大简约树和贝叶斯树。初步结果表明: 相比其他两种策略, 采用姐妹群中的多个分类单元作为外群更有利于系统发育重建得到现已被广泛认可的隧蜂科系统发育关系; 相比最大似然法和贝叶斯法, 虽然隧蜂科系统发育关系没有被很好地解决, 但最大简约法在不同外群选择策略下得到了较为一致的拓扑结构  相似文献   

13.
Phylogenetic relationships in Cornales were assessed using sequences rbcL and matK. Various combinations of outgroups were assessed for their suitability and the effects of long branches and outgroups on tree topology were examined using RASA 2.4 prior to conducting phylogenetic analyses. RASA identified several potentially problematic taxa having long branches in individual data sets that may have obscured phylogenetic signal, but when data sets were combined RASA no longer detected long branch problems. t(RASA) provides a more conservative measurement for phylogenetic signal than the PTP and skewness tests. The separate matK and rbcL sequence data sets were measured as not containing phylogenetic signal by RASA, but PTP and skewness tests suggested the reverse [corrected]. Nonetheless, the matK and rbcL sequence data sets suggested relationships within Cornales largely congruent with those suggested by the combined matK-rbcL sequence data set that contains significant phylogenetic signal as measured by t(RASA), PTP, and skewness tests. Our analyses also showed that a taxon having a long branch on the tree may not be identified as a "long-branched" taxon by RASA. The long branches identified by RASA had little effect on the arrangement of other taxa in the tree, but the placements of the long-branched taxa themselves were often problematic. Removing the long-branched taxa from analyses generally increased bootstrap support, often substantially. Use of non-optimal outgroups (as identified by RASA) decreased phylogenetic resolution in parsimony analyses and suggested different relationships in maximum likelihood analyses, although usually weakly supported clades (less than 50% support) were impacted. Our results do not recommend using t(RASA) as a sole criterion to discard data or taxa in phylogenetic analyses, but t(RASA) and the taxon variance ratio obtained from RASA may be useful as a guide for improved phylogenetic analyses. Results of parsimony and ML analyses of the sequence data using optimal outgroups suggested by RASA revealed four major clades within Cornales: (1) Curtisia-Grubbia, (2) Cornus-Alangium, (3) Nyssa-Camptotheca-Davidia-Mastixia-Diplopanax, and (4) Hydrangeaceae-Loasaceae, with clades (2) and (3) forming a monophyletic group sister to clade (4) and clade (1) sister to the remainder of Cornales. However, there was not strong bootstrap support for relationships among the major clades. The placement of Hydrostachys could not be reliably determined, although most analyses place the genus within Hydrangeaceae; ML analyses, for example, placed the genus as the sister of Hydrangeeae. Our results supported a Cornales including the systematically problematic Hydrostachys, a Cornaceae consisting of Cornus and Alangium, a Nyssaceae consisting of Nyssa and Camptotheca, a monogeneric Davidiaceae, a Mastixiaceae consisting of Mastixia and Diplopanax, and an expanded Grubbiaceae consisting of Grubbia and Curtisia, and two larger families, Hydrangeaceae and Loasaceae.  相似文献   

14.
Soleglad and Fet's (2003a) attempt to reconstruct the phylogeny of Recent (including extant) scorpions, the revised classification derived from it, and recent emendations, mostly published in their self‐edited online journal, Euscorpius, are deficient. Separate analyses of three independent matrices (morphology, 16S rDNA, 18S rDNA) were presented. In the morphological matrix, 52 binary and 10 tristate trichobothrial characters were replaced with one character comprising six ordered states representing trichobothrial “types”. The remaining matrix of 105 characters was further reduced to 33 “fundamental” characters (20% of the morphological dataset), the analysis of which appears to be the basis for the revised classification presented. The taxon sample for the morphological analysis included 14 supraspecific terminal taxa representing genera, the monophyly of only 7 (12.5%) of which has been confirmed. A composite terminal, assembled from the fragments of fossils that may not be confamilial let alone monophyletic, was created for the Palaeopisthacanthidae, employed as the primary outgroup for the analysis. Other important outgroup taxa, notably eurypterids, xiphosurans and other arachnids, were omitted entirely. The morphological characters presented contained numerous unjustifiable assumptions of character polarity and phylogenetic relationship. An approach to character coding, deliberately adopted to reduce “homoplasy”, biased the analysis towards a preconceived result. Structurally and topographically similar features in different taxa were explicitly assigned separate (often autapomorphic) states according to presumed phylogenetic relationships among the taxa in which they were observed. Putative “reversals” were coded as separate characters or states. Character transformation was forced by ordering, additive coding or Sankoff optimization through allegedly intermediate states for which there is no empirical evidence. Many characters were defined in a manner that demonstrates either a lack of understanding of, or disregard for, established methods and standards of morphological character coding. Some states display overlapping variation whereas others subsume variation that is not structurally or topographically similar. Polymorphic “states” were created for terminals with interspecific variation and unknown “states” for terminals that should have been scored unknown. Many characters were not evaluated for particular terminal taxa, but merely scored inapplicable although the structures and, consequently, the characters in question are present and therefore applicable to them. In view of the significant theoretical and empirical problems with the approach to cladistics taken by Soleglad and Fet, we find no justification for accepting either the results of their analyses or the revised classification derived from them. Pending the outcome of a rigorous phylogenetic analysis, published according to acceptable standards of scholarship in a peer‐reviewed journal, we revert to the suprageneric classification of Scorpiones reflected by the most recent peer‐reviewed, published treatments and reject all changes to the classification proposed by Soleglad, Fet and colleagues since 2001. We argue that an analysis and revised classification of the kind presented in various papers by these authors could not survive the peer‐review process of a mainstream scientific journal. The poor scholarship exemplified by these and other papers published in Euscorpius emphasize the importance of quality control associated with the emergent infrastructure of online publishing. A centralized register of taxa may be the only solution for ensuring quality control in the taxonomy of the future. © The Willi Hennig Society 2005.  相似文献   

15.
Recently, empirical evidence was presented that the permutation tail probability (PTP) test has extremely low discriminatory power when assessing character covariance in phylogenetic data based on bootstrap measures of confidence. Here we are concerned with the problem of using one statistical approach, especially when applied to empirical data, to judge the performance of another. Applying an appropriate statistical approach, we statistically demonstrated that the PTP test is extremely weak in detecting the absence of character covariation. In addition, we show that PTP is highly dependent on the number of terminals and the proportion of character states in phylogenetic matrices. In conclusion, we advocate the use of simulation studies when testing the performance of statistical tools applied to phylogenetic data.  相似文献   

16.
Erroneous estimates of ingroup relationships can be caused by attributes in the outgroup chosen to root the tree. Phylogenetic analyses of DNA sequences frequently yield incorrect estimates of ingroup relationships when the outgroup used to "root" the tree is highly divergent from the ingroup. This is especially the case when the outgroup has a different base composition than the ingroup. Unfortunately, in many instances, alternative less divergent outgroups are not available. In such cases, investigators must either target genes with attributes that minimize the problem (slowly evolving genes with stationary base compositions--which are often not ideal for estimating relationships among the more closely related ingroup taxa) or use inference models that are explicitly tailored to deal with an attenuated historical signal with a superimposed non-stationary base composition. In this paper we explore the problem both empirically and through simulation. For the empirical component we looked at the phylogenetic relationships among elasmobranch fishes (sharks and rays), a group whose closest living outgroup, the holocephalan Ghost fishes, are separated from the elasmobranchs by more than 100 million years of evolution. We compiled a data set for analysis comprising 10 single-copy nuclear protein-coding genes (12,096 bp) for representatives of the major lineages within elasmobranchs and holocephalans. For the simulation, we used an evolutionary model on a fixed tree topology to generate DNA sequence data sets which varied both in their distance to the outgroup, and in their base compositional difference between ingroup and outgroup. Results from both the empirical data set and the simulation, support the idea that deviation from base compositional stationarity, in conjunction with distance from the root can act in concert to compromise accuracy of estimated relationships within the ingroup. We tested several approaches to mitigate such problems. We found, that excluding genes with overall faster rates and heterogeneous base compositions, while the least sophisticated of the methods evaluated, seemed to be the most effective.  相似文献   

17.
Problems in cichlid systematics call for new characteristics to be exploited. Scale surface morphology and squamation patterns could provide novel and useful information. A comparative study comprising 105 African, 10 American, and eight outgroup species was conducted to identify the most useful scale and squamation characters within the family and to clarify their phylogenetic significance. A great number of obviously genetically fixed characters were established. At least IS scale granulation types could be identified, proving to be ofparticular value for systematic purposes. Squamation patterns on the head, breast and fins were also found to be of interest in this context. Different character states are described and their distribution is reviewed, together with a discussion of their plesiomorphic status. From the results it can be concluded that for the Cichlidae scale and squamation studies can be valuable tools in investigating phylogenetic relationships.  相似文献   

18.
Microsporidia branch at the base of eukaryotic phylogenies inferred from translation elongation factor 1alpha (EF-1alpha) sequences. Because these parasitic eukaryotes are fungi (or close relatives of fungi), it is widely accepted that fast-evolving microsporidian sequences are artifactually "attracted" to the long branch leading to the archaebacterial (outgroup) sequences ("long-branch attraction," or "LBA"). However, no previous studies have explicitly determined the reason(s) why the artifactual allegiance of microsporidia and archaebacteria ("M + A") is recovered by all phylogenetic methods, including maximum likelihood, a method that is supposed to be resistant to classical LBA. Here we show that the M + A affinity can be attributed to those alignment sites associated with large differences in evolutionary site rates between the eukaryotic and archaebacterial subtrees. Therefore, failure to model the significant evolutionary rate distribution differences (covarion shifts) between the ingroup and outgroup sequences is apparently responsible for the artifactual basal position of microsporidia in phylogenetic analyses of EF-1alpha sequences. Currently, no evolutionary model that accounts for discrete changes in the site rate distribution on particular branches is available for either protein or nucleotide level phylogenetic analysis, so the same artifacts may affect many other "deep" phylogenies. Furthermore, given the relative similarity of the site rate patterns of microsporidian and archaebacterial EF-1alpha proteins ("parallel site rate variation"), we suggest that the microsporidian orthologs may have lost some eukaryotic EF-1alpha-specific nontranslational functions, exemplifying the extreme degree of reduction in this parasitic lineage.  相似文献   

19.
A phylogenetic estimation of the temperate Gondwanan mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) was conducted using 143 morphological variables (59 raw and 84 scaled measurements) from 37 ingroup and 15 outgroup terminals. We used custom algorithms to do pairwise comparisons between characters and identify sets of dependent characters, which were collapsed using principal components analysis. We analysed the resulting data without discretization under the parsimony criterion. Monophyly or paraphyly of most groups suspected from previous molecular and morphological phylogenetic studies were recovered. Trees were optimized for monophyly of 20 different focus clades by varying character phylogenetic independence. This yielded a final tree with monophyly of 15 out of 20 focus clades, including the South African pettalids, which contains the troglomorphic species Speleosiro argasiformis Lawrence, 1931. Two of the remaining five clades were found paraphyletic, with the genera Aoraki, Rakaia, and Siro always being found polyphyeletic.  相似文献   

20.
Although long-branch attraction, the incorrect grouping of long lineages in a phylogeny because of systematic error, has been identified as a potential source of error in phylogenetic analysis for almost two decades, no empirical examples of the phenomenon exist. Here, I outline several criteria for identifying long-branch attraction and apply these criteria to 18S ribosomal DNA (rDNA) sequence data for 13 insects. Parsimony and minimum evolution with p distances group the two longest branches together (those leading to Strepsiptera and Diptera). Simulation studies show that the long branches are long enough to attract. When a tree is assumed in which Strepsiptera and Diptera are separated and many data sets are simulated for that tree (using the parameter estimates for that tree for the original data), parsimony analysis of the simulated data consistently groups Strepsiptera and Diptera. Analyses of the 18S rDNA sequences using methods that are less sensitive to the problem of long-branch attraction estimate trees in which the long branches are separate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号