首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Nitrate uptake and reduction are highly regulated processes. In many plant species, nitrate uptake is induced by nitrate, Little, however, is known about the genetic and molecular aspects of nitrate transport. Reduction of nitrate to ammonia is carried out by nitrate and nitrite reductases. Nitrate and light enhance expression of the nitrate and nitrite reductase genes in most species. Mutants have been selected and characterized to identify genes controlling nitrate reductase in several higher plant species. Six loci are known to control the synthesis or assembly of the molybdenum cofactor of nitrate reductase, xanthine dehydrogenase and aldehyde oxidase. The nitrate reductase apoenzyme is encoded by a single gene, except in allopolyploid species and in those species possessing both NADH-specific and NAD(P)H-bispecific nitrate reductases. Comparison of NADH-specific nitrate reductase amino acid sequences deduced from cloned genes reveals considerable sequence conservation in regions believed to encode the functional domains of nitrate reductase, but less conservation in the N-terminal and hinge regions of the enzyme. For both nitrate and nitrite reductases, sequence identity is greater among species of the same subclass than between Monocotyledoneae and Dicotyledoneae subclass species.  相似文献   

2.
Nitrate reductase of green algae is located in the pyrenoid   总被引:6,自引:5,他引:1       下载免费PDF全文
Antibodies against nitrate reductase from Monoraphidium braunii have been used to determine the antigenic relationships of nitrate reductases from different green algae. Nitrate reductases from Chlamydomonas reinhardii, Chlorella fusca, Dunaliella salina, and Scenedesmus obliquus, were inhibited by, and cross-reacted with, antibodies raised against the enzyme from Monoraphidium braunii.

These antibodies were also used to determine, by immunoelectron microscopy, the intracellular location of nitrate reductase in the aforementioned green algae. In all cases, the enzyme was specifically located in the pyrenoid.

  相似文献   

3.
Nucleotide sequences were determined for cDNA clones for squash NADH:nitrate oxidoreductase (EC 1.6.6.1), which is one of the most completely characterized forms of this higher plant enzyme. An open reading frame of 2754 nucleotides began at the first ATG. The deduced amino acid sequence contains 918 residues, with a predicted Mr = 103,376. The amino acid sequence is very similar to sequences deduced for other higher plant nitrate reductases. The squash sequence has significant similarity to the amino acid sequences of sulfite oxidase, cytochrome b5, and NADH:cytochrome b5 reductase. Alignment of these sequences with that of squash defines domains of nitrate reductase that appear to bind its 3 prosthetic groups (molybdopterin, heme-iron, and FAD). The amino acid sequence of the FAD domain of squash nitrate reductase was aligned with FAD domain sequences of other NADH:nitrate reductases, NADH:cytochrome b5 reductases, NADPH:nitrate reductases, ferredoxin:NADP+ reductases, NADPH:cytochrome P-450 reductases, NADPH:sulfite reductase flavoproteins, and Bacillus megaterium cytochrome P-450BM-3. In this multiple alignment, 14 amino acid residues are invariant, which suggests these proteins are members of a family of flavoenzymes. Secondary structure elements of the structural model of spinach ferredoxin:NADP+ reductase were used to predict the secondary structure of squash nitrate reductase and the other related flavoenzymes in this family. We suggest that this family of flavoenzymes, nearly all of which reduce a hemoprotein, be called "flavoprotein pyridine nucleotide cytochrome reductases."  相似文献   

4.
Nitrogen is a vital component in living organisms as it participates in the making of essential biomolecules such as proteins, nucleic acids, etc. In the biosphere, nitrogen cycles between the oxidation states +V and -III producing many species that constitute the biogeochemical cycle of nitrogen. All reductive branches of this cycle involve the conversion of nitrate to nitrite, which is catalyzed by the enzyme nitrate reductase. The characterization of nitrate reductases from prokaryotic organisms has allowed us to gain considerable information on the molecular basis of nitrate reduction. Prokaryotic nitrate reductases are mononuclear Mo-containing enzymes sub-grouped as respiratory nitrate reductases, periplasmic nitrate reductases and assimilatory nitrate reductases. We review here the biological and molecular properties of these three enzymes along with their gene organization and expression, which are necessary to understand the biological processes involved in nitrate reduction.  相似文献   

5.
We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.  相似文献   

6.
Abstract: Monoclonal antibodies against bovine brain succinic semialdehyde reductase were produced and characterized. A total of nine monoclonal antibodies recognizing different epitopes of the enzyme were obtained, of which two inhibited the enzyme activity and three stained cytosol of rat spinal cord neurons as observed by indirect immunofluorescence microscopy. When unfractionated total proteins of bovine brain homogenate were separated by gel electrophoresis and immunoblotted, the antibodies specifically recognized a single protein band of 34 kDa, which comigrates with purified bovine succinic semialdehyde reductase. Using the antisuccinic semialdehyde reductase antibodies as probes, we investigated the cross-reactivities of brain succinic semialdehyde reductases from some mammalian and an avian species. The immunoreactive bands on western blots appeared to be the same in molecular mass—34 kDa—in all animal species tested, including humans. The result indicates that brain succinic semialdehyde reductase is distinct from other aldehyde reductases and that mammalian brains contain only one succinic semialdehyde reductase. Moreover, the enzymes among the species are immunologically very similar, although some properties of the enzymes reported previously were different from one another.  相似文献   

7.
Two nitrate reductases, nitrate reductase A and nitrate reductase Z, exist in Escherichia coli. The nitrate reductase Z enzyme has been purified from the membrane fraction of a strain which is deleted for the operon encoding the nitrate reductase A enzyme and which harbours a multicopy plasmid carrying the nitrate reductase Z structural genes; it was purified 219 times with a yield of about 11%. It is an Mr-230,000 complex containing 13 atoms iron and 12 atoms labile sulfur/molecule. The presence of a molybdopterin cofactor in the nitrate reductase Z complex was demonstrated by reconstitution experiments of the molybdenum-cofactor-deficient NADPH-dependent nitrate reductase activity from a Neurospora crassa nit-1 mutant and by fluorescence emission and excitation spectra of stable derivatives of molybdoterin extracted from the purified enzyme. Both nitrate reductases share common properties such as relative molecular mass, subunit composition and electron donors and acceptors. Nevertheless, they diverge by two properties: their electrophoretic migrations are very different (RF of 0.38 for nitrate reductase Z versus 0.23 for nitrate reductase A), as are their susceptibilities to trypsin. An immunological study performed with a serum raised against nitrate reductase Z confirmed the existence of common epitopes in both complexes but unambiguously demonstrated the presence of specific determinants in nitrate reductase Z. Furthermore, it revealed a peculiar aspect of the regulation of both nitrate reductases: the nitrate reductase A enzyme is repressed by oxygen, strongly inducible by nitrate and positively controlled by the fnr gene product; on the contrary, the nitrate reductase Z enzyme is produced aerobically, barely induced by nitrate and repressed by the fnr gene product in anaerobiosis.  相似文献   

8.
Many species of Bacteria and Archaea respire nitrate using a molybdenum-dependent membrane-bound respiratory system called Nar. Classically, the 'Bacterial' Nar system is oriented such that nitrate reduction takes place on the inside of this membrane. However, the active site subunit of the 'Archaeal' Nar systems has a twin arginine ('RR') motif, which is a suggestion of translocation to the outside of the cytoplasmic membrane. These 'Archaeal' type of nitrate reductases are part of a group of molybdoenzymes with an 'RR' motif that are predicted to have an aspartate ligand to the molybdenum ion. This group includes selenate reductases and possible sequence signatures are described that serve to distinguish the Nar nitrate reductases from the selenate reductases. The 'RR' sequences of nitrate reductases of Archaea and some that have recently emerged in Bacteria are also considered and it is concluded that there is good evidence for there being both Archaeal and Bacterial examples of Nar-type nitrate reductases with an active site on the outside of the cytoplasmic membrane. Finally, the bioenergetic consequences of nitrate reduction on the outside of the cytoplasmic membrane have been explored.  相似文献   

9.
Lysine 85 (K85) in the primary structure of the catalytic subunit of the periplasmic nitrate reductase (NAP-A) of Ralstonia eutropha H16 is highly conserved in periplasmic nitrate reductases and in the structurally related catalytic subunit of the formate dehydrogenases of various bacterial species. It is located between an [4Fe-4S] center and one of the molybdopterin-guanine dinucleotides mediating the through bonds electron flow to convert the specific substrate of the respective enzymes. To examine the role of K85, the structure of NAP-A of R. eutropha strain H16 was modeled on the basis of the crystal structure from the Desulfovibrio desulfuricans enzyme (Dias et al. Structure Fold Des. 7(1) (1999) 65) and K85 was replaced by site-directed mutagenesis, yielding K85R and K85M, respectively. The specific nitrate reductase activity was determined in periplasmic extracts. The mutant enzyme carrying K85R showed 23% of the wild-type activity, whereas the replacement by a polar, uncharged residue (K85M) resulted in complete loss of the catalytic activity. The reduced nitrate reductase activity of K85R was not due to different quantities of the expressed gene product, as controlled immunologically by NAP-specific antibodies. The results indicate that K85 is optimized for the electron transport flux to reduce nitrate to nitrite in NAP-A, and that the positive charge alone cannot meet further structural requirement for efficient electron flow.  相似文献   

10.
Bacterial cytoplasmic assimilatory nitrate reductases are the least well characterized of all of the subgroups of nitrate reductases. In the present study the ferredoxin-dependent nitrate reductase NarB of the cyanobacterium Synechococcus sp. PCC 7942 was analyzed by spectropotentiometry and protein film voltammetry. Metal and acid-labile sulfide analysis revealed nearest integer values of 4:4:1 (iron/sulfur/molybdenum)/molecule of NarB. Analysis of dithionite-reduced enzyme by low temperature EPR revealed at 10 K the presence of a signal that is characteristic of a [4Fe-4S](1+) cluster. EPR-monitored potentiometric titration of NarB revealed that this cluster titrated as an n = 1 Nernstian component with a midpoint redox potential (E(m)) of -190 mV. EPR spectra collected at 60 K revealed a Mo(V) signal termed "very high g" with g(av) = 2.0047 in air-oxidized enzyme that accounted for only 10-20% of the total molybdenum. This signal disappeared upon reduction with dithionite, and a new "high g" species (g(av) = 1.9897) was observed. In potentiometric titrations the high g Mo(V) signal developed over the potential range of -100 to -350 mV (E(m) Mo(6+/5+) = -150 mV), and when fully developed, it accounted for 1 mol of Mo(V)/mol of enzyme. Protein film voltammetry of NarB revealed that activity is turned on at potentials below -200 mV, where the cofactors are predominantly [4Fe-4S](1+) and Mo(5+). The data suggests that during the catalytic cycle nitrate will bind to the Mo(5+) state of NarB in which the enzyme is minimally two-electron-reduced. Comparison of the spectral properties of NarB with those of the membrane-bound and periplasmic respiratory nitrate reductases reveals that it is closely related to the periplasmic enzyme, but the potential of the molybdenum center of NarB is tuned to operate at lower potentials, consistent with the coupling of NarB to low potential ferredoxins in the cell cytoplasm.  相似文献   

11.
Production of nitrate reductase was studied in 15 species of microscopic fungi grown on a nitrate-containing medium. Experiments were performed with Fusarium oxysporum 11dn1, a fungus capable of producing nitrous oxide as the end product of denitrification. Moreover, a shift from aerobic to anaerobic conditions of growth was accompanied by a sharp increase in the activity of nitrate reductase. Studies of nitrate reductase from the mycelium of Fusarium oxysporum 11dn1, grown under aerobic and anaerobic conditions, showed that this enzyme belongs to molybdenum-containing nitrate reductases. The enzymes under study differed in the molecular weight, temperature optimum, and other properties. Nitrate reductase from the mycelium grown under aerobic conditions was shown to belong to the class of assimilatory enzymes. However, nitrate reductase from the mycelium grown anaerobically had a dissimilatory function. An increase in the activity of dissimilatory nitrate reductase, observed under anaerobic conditions, was associated with de novo synthesis of the enzyme.  相似文献   

12.
Two symbiotic species, Photobacterium leiognathi and Vibrio fischeri, and one non-symbiotic species, Vibrio harveyi, of the Vibrionaceae were tested for their ability to grow by anaerobic respiration on various electron acceptors, including trimethylamine N-oxide (TMAO) and dimethylsulphoxide (DMSO), compounds common in the marine environment. Each species was able to grow anaerobically with TMAO, nitrate or fumarate, but not with DMSO, as an electron acceptor. Cell growth under microaerophilic growth conditions resulted in elevated levels of TMAO reductase, nitrate reductase and fumarate reductase activity in each strain, whereas growth in the presence of the respective substrate for each enzyme further elevated enzyme activity. TMAO reductase specific activity was the highest of all the reductases. Interestingly, the bacteria-colonized light organs from the two squids, Euprymna scolopes and Euprymna morsei, and the light organ of the ponyfish, Leiognathus equus, also had high levels of TMAO reductase enzyme activity, in contrast to non-symbiotic tissues. The ability of these bacterial symbionts to support cell growth by respiration with TMAO may conceivably eliminate the competition for oxygen needed for both bioluminescence and metabolism.  相似文献   

13.
Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conservation, whereas nitrite reductase seems to be a cytosolic enzyme involved in NADH reoxidation. Syntheses of both enzymes are inhibited by oxygen and induced to greater or lesser degrees by nitrate or nitrite, respectively. In whole cells, nitrite reduction is inhibited by nitrate and also by high concentrations of nitrite (> or = 10 mM). Nitrite did not influence nitrate reduction. Two possible mechanisms for the inhibition of nitrite reduction by nitrate that are not mutually exclusive are discussed. (i) Competition for NADH nitrate reductase is expected to oxidize the bulk of the NADH because of its higher specific activity. (ii) The high rate of nitrate reduction could lead to an internal accumulation of nitrite, possibly the result of a less efficient nitrite reduction or export. So far, we have no evidence for the presence of other dissimilatory or assimilatory nitrate or nitrite reductases in S. carnosus.  相似文献   

14.
Bromphenol blue, which was reduced with dithionite, was found to support nitrate reduction catalyzed by squash NADH:nitrate reductase at a rate about 5 times greater than NADH with freshly prepared enzyme and 10 times or more with enzyme having been frozen and thawed. Kinetic analysis of bromphenol blue as a substrate for squash nitrate reductase yielded apparent Km values of 60 micromolar for bromphenol blue at 10 millimolar nitrate and 500 micromolar for nitrate at 0.2 millimolar bromphenol blue. With the same preparation of enzyme the apparent Km values were 9 micromolar for NADH at 10 millimolar nitrate and 50 micromolar nitrate at 0.1 millimolar NADH. Bromphenol blue was found to be a noncompetitive inhibitor versus NADH with a Ki of 0.3 millimolar. When squash NADH:nitrate reductase activity was inactivated with p-hydroxymercuribenzoate or denatured by heating at 40°C, the bromphenol blue nitrate reductase activity was not lost. These results were taken to indicate that bromphenol blue and NADH donated electrons to nitrate reductase at different sites. When monoclonal antibodies prepared against corn and squash nitrate reductases were used to inhibit the nitrate reductase activities supported by NADH, bromphenol blue, and methyl viologen, differential inhibition was found which tended to indicate that the three electron donors were interacting with the enzyme at different sites. One monoclonal antibody prepared against squash nitrate reductase inhibited all three activities of both corn and squash nitrate reductase. It appears this antibody may bind to a highly conserved antigenic site in the nitrate binding region of the enzyme.  相似文献   

15.
Evolution of bacterial denitrification and denitrifier diversity   总被引:3,自引:0,他引:3  
Little is known about the role of nitrate in evolution of bacterial energy-generating mechanisms. Denitrifying bacteria are commonly regarded to have evolved from nitrate-respiring bacteria. Some researchers regard denitrification to be the precursor of aerobic respiration; others feel the opposite is true. Currently recognized denitrifying bacteria such as Hyphomicrobium, Paracoccus, Pseudomonas and Thiobacillus form a very diverse group. However, inadequate testing procedures and uncertain taxonomic identification of many isolates may have overstated the number of genera with species capable of denitrification. Nitrate reductases are structurally similar among denitrifying bacteria, but distinct from the enzymes in other nitrate-reducing organisms. Denitryfying bacteria have one of two types of nitrite reductase, either a copper-containing enzyme or an enzyme containing a cytochrome cd moiety. Both types are distinct from other nitrate reductases. Organisms capable of dissimilatory nitrate reduction are widely distributed among eubacterial groups defined by 16S ribosomal RNA phylogeny. Indeed, nitrate reduction is an almost universal property of actinomycetes and enteric organisms. However, denitrification is restricted to genera within the purple photosynthetic group. Denitrification within the genus Pseudomonas is distributed in accordance with DNA and RNA homology complexes. Denitrifiers seem to have evolved from a common ancestor within the purple photosynthetic bacterial group, but not from a nitrate-reducing organism such as those found today. Although denitrification seems to have arisen at the same time as aerobic respiration, the evolutionary relationship between the two cannot be determined at this time.  相似文献   

16.
A Paracoccus denitrificans strain (M6Ω) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases. Received: 12 August 1996 / Accepted: 29 October 1996  相似文献   

17.
The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction.  相似文献   

18.
The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction.  相似文献   

19.
The toxic organochlorine pesticide, chlordecone (Kepone), is excreted in human bile primarily as a stable, reduced monoalcohol metabolite. This bioreduction is catalyzed by a hepatic cytosolic enzyme activity termed chlordecone reductase. We purified this enzyme from human liver and found that chlordecone reductase resembles the family of xenobiotic metabolizing enzymes referred to as the aldo-keto reductases based on its biochemical characteristics, including its ability to catalyze the reduction of a carbonyl-containing substrate. However, analyses of liver cytosolic samples on immunoblots developed with anti-chlordecone reductase antibodies revealed that immunoreactive proteins were present only in those mammalian species that convert chlordecone to chlordecone alcohol in vivo (man, gerbil, and rabbit) and not in those species unable to reduce chlordecone (rat, mouse, and hamster). Hence, chlordecone reductase is unique among aldo-keto reductases in being species-specific. Quantitative immunoblot analyses of seven human liver specimens disclosed two immunoreactive proteins whose total concentration varied over a 6-fold range. Moreover, the amount of immunoreactive protein was directly proportional to chlordecone reductase activity in each sample. We conclude that chlordecone reductase is a unique aldo-keto reductase of potential clinical importance whose expression varies markedly among individuals.  相似文献   

20.
1. Respiratory nitrate reductase of Bacillus licheniformis was extracted from the bacterial membranes by treatment with deoxycholate and purified to a homogeneous state by means of gel chromatography and anion-exchange chromatography. 2. The enzyme (Mr = 193,000, s20, w = 8.6) consists of two subunits, having apparent molecular weight of 150,000 (alpha subunit) and 57,000 (beta subunit), which are present in an equimolar ratio. It does not contain carbohydrate. Ageing of the enzyme appears to result in splitting of the polypeptide chains at specific sites followed by dissociation and reassociation of the digestion products in various combinations. 3. In contrast to Klebsiella aerogenes repiratory nitrate reductase, which is isolated in a tetrameric form that can be reversibly dissociated into a monomeric form by detergents, B. licheniformis nitrate reductase, after isolation, is always present in a monomeric form. This property is related to the difference in membrane localization of the enzyme in the two organisms. 4. B licheniformis nitrate reductase contains 6.9 atoms of non-heme iron, 6.7 atoms of acid-labile sulfide and 0.93 atoms of molybdenum per molecule of enzyme. The molybdenum seems to be part of a low-molecular weight peptide Mo-cofactor) to which it may be bound by interaction with thiol-groups. 5. Antiserum against the native enzyme contains antibodies against both subunits as well as the Mo-cofactor. The Mo-cofactor does not have any antigenic determininants in common with either the alpha or the beta subunit. Also neither subunit cross-reacts with antiserum against the other subunit. Whereas the respiratory nitrate reductases from K. aerogenes and Escherichia coli are immunologically related, the native enzyme from B. licheniformis does not show any cross-reaction with antiserum prepared against either the K. aerogenes or the E. coli enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号