首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin has been solved and refined at 2.0 A resolution; the crystallographic R-factor is 13.6%. The fluoride ion binds to the sixth co-ordination position of the heme iron, 2.2 A from the metal. Binding of the negatively charged ligand on the distal side of the heme pocket of this myoglobin, which lacks the distal His, is associated with a network of hydrogen bonds that includes the fluoride ion, the residue Arg66 (E10), the heme propionate III, three ordered water molecules and backbone or side-chain atoms from the CD region. A comparison of fluoride and oxygen dissociation rate constants of A. limacina myoglobin, sperm whale (Physeter catodon) myoglobin and Glycera dibranchiata monomeric hemoglobin, suggests that the conformational readjustment of Arg66 (E10) in A. limacina myoglobin may represent the molecular basis for ligand stabilization, in the absence of a hydrogen-bond donor residue at the distal E7 position.  相似文献   

2.
The binding mode of azide to the ferric form of Aplysia limacina myoglobin has been studied by X-ray crystallography. The three-dimensional structure of the complex has been refined at 1.9 A resolution to a crystallographic R-factor of 13.9%, including 126 ordered solvent molecules. Azide binds to the heme iron, at the sixth co-ordination position, and is oriented towards the outer part of the distal site crevice. This orientation is stabilized by an ionic interaction with the side-chain of Arg66 (E10) which, from an outer orientation in the 'aquo-met' ligand-free myoglobin, folds back towards the distal site in the presence of the anionic ligand. In the absence of a hydrogen bond donor residue at the distal E7 position in Aplysia limacina myoglobin, a different polar residue, Arg66 at the E10 topological position, has been selected by molecular evolution in order to grant ligand stabilization.  相似文献   

3.
Blair-Johnson M  Fiedler T  Fenna R 《Biochemistry》2001,40(46):13990-13997
The 1.9 A X-ray crystal structure of human myeloperoxidase complexed with cyanide (R = 0.175, R(free) = 0.215) indicates that cyanide binds to the heme iron with a bent Fe-C-N angle of approximately 157 degrees, and binding is accompanied by movement of the iron atom by 0.2 A into the porphyrin plane. The bent orientation of the cyanide allows the formation of three hydrogen bonds between its nitrogen atom and the distal histidine as well as two water molecules in the distal cavity. The 1.85 A X-ray crystal structure of an inhibitory complex with thiocyanate (R = 0.178, R(free) = 0.210) indicates replacement of chloride at a proximal helix halide binding site in addition to binding in the distal cavity in an orientation parallel with the heme. The thiocyanate replaces two water molecules in the distal cavity and is hydrogen bonded to Gln 91. The 1.9 A structures of the complexes formed by bromide (R = 0.215, R(free) = 0.270) and thiocyanate (R = 0.198, R(free) = 0.224) with the cyanide complex of myeloperoxidase show how the presence of bound cyanide alters the binding site for bromide in the distal heme cavity, while having little effect on thiocyanate binding. These results support a model for a single common binding site for halides and thiocyanate as substrates or as inhibitors near the delta-meso carbon of the porphyrin ring in myeloperoxidase.  相似文献   

4.
The structure of carbon-monoxy (Fe II) myoglobin at 260 K has been solved at a resolution of 1.5 A by X-ray diffraction and a model refined against the X-ray data by restrained least-squares. The CO ligand is disordered and distorted from the linear conformation seen in model compounds. At least two conformations, with Fe--C--O angles of 140 degrees and 120 degrees, are required to model the system. The heme pocket is significantly larger than in deoxy-myoglobin because the distal residues have relaxed around the ligand; the largest displacement occurs for the distal histidine side-chain, which moves more than 1.4 A on ligand binding. The side-chain of Arg45 (CD3) is disordered and apparently exists in two equally populated conformations. One of these does not block the motion of the distal histidine out of the binding pocket, suggesting a mechanism for ligand entry. The heme group is planar (root-mean-square deviation from planarity is 0.08 A) with no doming of the pyrrole groups. The Fe--N epsilon 2 (His93) bond length is 2.2 A and the Fe--C bond length in the CO complex is 1.9 A. The iron is the least-squares plane of the heme, and this leads to the proximal histidine moving by 0.4 A relative to its position in deoxy-myoglobin. This shift correlates with a global structural change, with the proximal part of the molecule translated towards the heme plane.  相似文献   

5.
The three-dimensional structure of ferric myoglobin from the mollusc Aplysia limacina has been refined at 2 X 0 A resolution. The crystallographic R factor, calculated at this stage, is 0 X 194. Despite its high content of apolar residues (both aromatic and aliphatic), Aplysia limacina myoglobin, which contains only one histidine residue (at the proximal position), has a structure that conforms to the common eight-helices globin fold observed in other phyla.  相似文献   

6.
We have used x-ray crystallography to determine the structures of sperm whale myoglobin (Mb) in four different ligation states (unligated, ferric aquomet, oxygenated, and carbonmonoxygenated) to a resolution of better than 1.2 A. Data collection and analysis were performed in as much the same way as possible to reduce model bias in differences between structures. The structural differences among the ligation states are much smaller than previously estimated, with differences of <0.25 A root-mean-square deviation among all atoms. One structural parameter previously thought to vary among the ligation states, the proximal histidine (His-93) azimuthal angle, is nearly identical in all the ferrous complexes, although the tilt of the proximal histidine is different in the unligated form. There are significant differences, however, in the heme geometry, in the position of the heme in the pocket, and in the distal histidine (His-64) conformations. In the CO complex the majority conformation of ligand is at an angle of 18 +/- 3 degrees with respect to the heme plane, with a geometry similar to that seen in encumbered model compounds; this angle is significantly smaller than reported previously by crystallographic studies on monoclinic Mb crystals, but still significantly larger than observed by photoselection. The distal histidine in unligated Mb and in the dioxygenated complex is best described as having two conformations. Two similar conformations are observed in MbCO, in addition to another conformation that has been seen previously in low-pH structures where His-64 is doubly protonated. We suggest that these conformations of the distal histidine correspond to the different conformational substates of MbCO and MbO(2) seen in vibrational spectra. Full-matrix refinement provides uncertainty estimates of important structural parameters. Anisotropic refinement yields information about correlated disorder of atoms; we find that the proximal (F) helix and heme move approximately as rigid bodies, but that the distal (E) helix does not.  相似文献   

7.
The structure of pig aquometmyoglobin has been refined to a crystallographic R-factor of 19.8% against X-ray diffraction data between 10- and 1.75-A spacing. The final structural model comprises two molecules of pig myoglobin, 233 water molecules, and two sulfate ions. A water molecule is coordinated to each of the heme iron atoms with an average Fe-OH2 bond distance of 2.19 A, and the mean Fe-N epsilon (proximal histidine-93) distance is 2.20 A. In contrast to the structure of sperm whale metmyoglobin, the iron is not significantly displaced from the plane of the heme. At the entrance to the heme pocket, the side-chain amino group of lysine-45 (CD3) is well-defined in the electron density map and forms salt-bridging interactions with the heme 6-propionate and with a sulfate ion. Serine and arginine replacements have been made previously at position 45 to examine the proposal that the CD3 side chain acts as a barrier to ligand entry into the protein. Crystal structures of the arginine-45 and serine-45 mutant metmyoglobins have been solved to 1.9 and 2.0 A resolution, respectively. In both cases the structural changes are confined to the site of mutation. Arginine-45 takes up a conformation closely similar to that observed for this residue in wild-type sperm whale myoglobin, in which it makes more extensive charge-charge and charge-dipole interactions and appears to restrict the movement of the distal histidine away from the ligand. The hydroxyl group of serine-45 is disordered, but it is clear that the effect of the mutation is to open up the solvent-exposed face of the heme pocket.  相似文献   

8.
The x-ray crystal structure of the fluoride derivative of ferric sperm whale (Physeter catodon) myoglobin (Mb) has been determined at 2.5 A resolution (R = 0.187) by difference Fourier techniques. The fluoride anion, sitting in the central part of the heme distal site and coordinated to the heme iron, is hydrogen bonded to the distal His(64)E7 NE2 atom and to the W195 solvent water molecule. This water molecule also significantly interacts with the same HisE7 residue, which stabilizes the coordinated fluoride ion. Moreover, fluoride and formate binding to ferric Aplysia limacina Mb, sperm whale (Physeter catodon) Mb, horse (Caballus caballus) Mb, loggerhead sea turtle (Caretta caretta) Mb, and human hemoglobin has been investigated by 1H-NMR relaxometry. A strong solvent proton relaxation enhancement is observed for the fluoride derivatives of hemoproteins containing HisE7. Conversely, only a small outer-sphere contribution to the solvent relaxation rate has been observed for all of the formate derivatives considered and for the A. limacina Mb:fluoride derivative, where HisE7 is replaced by Val.  相似文献   

9.
Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to biliverdin by utilizing O(2) and NADPH. HO (apoHO) was crystallized as twinned P3(2) with three molecules per asymmetric unit, and its crystal structure was determined at 2.55 A resolution. Structural comparison of apoHO and its complex with heme (HO-heme) showed three distinct differences. First, the A helix of the eight alpha-helices (A-H) in HO-heme, which includes the proximal ligand of heme (His25), is invisible in apoHO. In addition, the B helix, a portion of which builds the heme pocket, is shifted toward the heme pocket in apoHO. Second, Gln38 is shifted toward the position where the alpha-meso carbon of heme is located in HO-heme. Nepsilon of Gln38 is hydrogen-bonded to the carbonyl group of Glu29 located at the C-terminal side of the A helix in HO-heme, indicative that this hydrogen bond restrains the angle between the A and B helices in HO-heme. Third, the amide group of Gly143 in the F helix is directed outward from the heme pocket in apoHO, whereas it is directed toward the distal ligand of heme in HO-heme. This means that the F helix around Gly143 must change its conformation to accommodate heme binding. The apoHO structure has the characteristic that the helix on one side of the heme pocket fluctuates, whereas the rest of the structure is similar to that of HO-heme, as observed in such hemoproteins as myoglobin and cytochromes b(5) and b(562). These structural features of apoHO suggest that the orientation of the proximal helix and the position of His25 are fixed upon heme binding.  相似文献   

10.
Aplysia limacina myoglobin lacks the distal histidine (His (E7)) and displays a ligand stabilization mechanism based on Arg(E10). The double mutant Val(E7)His-Arg(E10)Thr has been prepared to engineer the role of His(E7), typical of mammalian myoglobins, in a different globin framework. The 2.0 A crystal structure of Val(E7)His-Arg(E10)Thr met-Mb mutant reveals that the His(E7) side chain points out of the distal pocket, providing an explanation for the observed failure to stabilize the Fe(II) bound oxygen in the ferrous myoglobin. Moreover, spectroscopic analysis together with kinetic data on azide binding to met-myoglobin are reported and discussed in terms of the presence of a water molecule at coordination distance from the heme iron.  相似文献   

11.
Crystal structures of the ferric and ferrous heme complexes of HmuO, a 24-kDa heme oxygenase of Corynebacterium diphtheriae, have been refined to 1.4 and 1.5 A resolution, respectively. The HmuO structures show that the heme group is closely sandwiched between the proximal and distal helices. The imidazole group of His-20 is the proximal heme ligand, which closely eclipses the beta- and delta-meso axis of the porphyrin ring. A long range hydrogen bonding network is present, connecting the iron-bound water ligand to the solvent water molecule. This enables proton transfer from the solvent to the catalytic site, where the oxygen activation occurs. In comparison to the ferric complex, the proximal and distal helices move closer to the heme plane in the ferrous complex. Together with the kinked distal helix, this movement leaves only the alpha-meso carbon atom accessible to the iron-bound dioxygen. The heme pocket architecture is responsible for stabilization of the ferric hydroperoxo-active intermediate by preventing premature heterolytic O-O bond cleavage. This allows the enzyme to oxygenate selectively at the alpha-meso carbon in HmuO catalysis.  相似文献   

12.
Good quality resonance Raman (RR) spectra have been obtained for cytochrome c peroxidase single crystals (0.2 x 0.5 x 1 mm) lying on their 110 faces on a microscope stage. Crystal orientation and polarization effects are observed which differentiate the RR bands on the basis of the symmetries of the porphyrin vibrational modes. The measured depolarization ratios are accurately calibrated for isolated bands of both totally symmetric and non totally symmetric modes by using a model of D4h chromophores in an oriented gas using the crystal structure atomic coordinates. The calculations indicate that the electronic transition moments are approximately along the lines connecting the methine bridges, suggesting an electronic steering effect of the vinyl groups. Deviations are observed for bands associated with the porphyrin v10 and the vinyl C = C stretching modes, which may be due to their near-resonant interaction. The band frequencies correspond to those of a five-coordinate high-spin FeIII heme, as previously observed in solution, consistent with the X-ray structure showing the Fe atom to be out of the heme plane on the proximal side with a distal water molecule located at a nonbonded distance, 2.4 A. The temperature dependence of the RR spectrum was determined with a Joule-Thompson cryostat on crystals sealed in glass capillaries. As the temperature is lowered, the spectrum converts to one characteristic of a low-spin FeIII heme. The conversion, which is readily reversible, is quite gradual. It is detectable at -50 degrees C but is incomplete even at -190 degrees C. A temperature effect on the protein structure is proposed which permits the Fe atom to approach the heme plane and bind the distal water molecule, or the distal histidine.  相似文献   

13.
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximately 3 cm(-1) for deltaP = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with glasslike properties of myoglobin below 160 K.  相似文献   

14.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
We have used resonance Raman spectroscopy to study 11 distal pocket mutants and the "wild type" and native ferric sperm whale myoglobin. The characteristic Raman core-size markers v4, v3, v2, and v10 are utilized to assign the spin and coordination state of each sample. It is demonstrated that replacements of the distal and proximal histidines can discriminate against H2O as a sixth ligand and favor a pentacoordinate Fe3+ atom. Soret absorption band blueshifts are correlated with the pentacoordinate heme environment. One E7 replacement (Arg) leads to an iron spin state change and produces a low spin species. The Glu and Ala mutations at position E11 leave the protein's spin and coordination unaltered. A laser-induced photoreduction effect is observed in all pentacoordinate mutants and seems to be correlated with the loss of the heme-bound water molecule.  相似文献   

16.
The crystal structures of acid metmyoglobin and deoxy cobalt(II)mesoporphyrin IX myoglobin were compared by a difference Fourier analysis at 2.5 A resolution. No large differences in protein conformation were observed. The greatest density of structural differences was found in the heme region. There was a loss of the histidine-bound sulfate ion and of the metal-bound water molecule, as well as a shift in the position of the prosthetic group with associated changes in the adjacent globin. The structural changes resulting from the substitution of ethyl for the vinyl side chains of the porphyrin were clearly observed. There was also a suggestion of a conformational change of the porphyrin ring. It was not clear whether there was any change of the metal position relative to the porphyrin plane or proximal histidine.  相似文献   

17.
The effect of pH on (i) the second-order rate constant for CO binding and (ii) the spectral properties of the deoxygenated derivative of several monomeric hemoproteins has been investigated in the pH range between 2.3 and 9.0. As in the case of 3-[1-imidazolyl]-propylamide monomethyl ester mesoheme, the rate constant for CO binding to sperm whale, horse, Dermochelys coriacea, Coryphaena hippurus, and Aplysia limacina myoglobins (the latter only in the presence of acetate/acetic acid mixture) increases, as the pH is lowered, to a value at least 1 order of magnitude higher than at pH 7.0. Such an effect is not observed in A. limacina myoglobin (in the absence of the acetate/acetic acid mixture) and Chironomus thummi thummi erythrocruorin. Moreover, the absorption spectrum, in the visible region, of the deoxy derivative of all these monomeric hemoproteins (with the exception of A. limacina myoglobin in the absence of the acetate/acetic acid mixture) undergoes a transition as the pH is lowered, an effect observed previously with 3-[1-imidazolyl]-propylamide monomethyl ester protoheme. On the basis of analogous spectroscopic and kinetic properties of chelated heme model compounds we attribute this behavior to the protonation of the N epsilon of the proximal imidazole involved in the bond with the iron atom. On the basis of this model the movement of the iron atom to the heme plane appears as a crucial step for CO binding, the activation free energy of the process amounting to approximately 2 kcal/mol.  相似文献   

18.
Qin J  Perera R  Lovelace LL  Dawson JH  Lebioda L 《Biochemistry》2006,45(10):3170-3177
Crystal structures of the ferric H93G myoglobin (Mb) cavity mutant containing either an anionic proximal thiolate sulfur donor or a carboxylate oxygen donor ligand are reported at 1.7 and 1.4 A resolution, respectively. The crystal structure and magnetic circular dichroism spectra of the H93G Mb beta-mercaptoethanol (BME) thiolate adduct reveal a high-spin, five-coordinate complex. Furthermore, the bound BME appears to have an intramolecular hydrogen bond involving the alcohol proton and the ligated thiolate sulfur, mimicking one of the three proximal N-H...S hydrogen bonds in cytochrome P450. The Fe is displaced from the porphyrin plane by 0.5 A and forms a 2.41 A Fe-S bond. The Fe(3+)-S-C angle is 111 degrees , indicative of a covalent Fe-S bond with sp(3)-hybridized sulfur. Therefore, the H93G Mb.BME complex provides an excellent protein-derived structural model for high-spin ferric P450. In particular, the Fe-S bond in high-spin ferric P450-CAM has essentially the same geometry despite the constraints imposed by covalent linkage of the cysteine to the protein backbone. This suggests that evolution led to the geometric optimization of the proximal Fe-S(cysteinate) bond in P450. The crystal structure and spectral properties of the H93G Mb acetate adduct reveal a high-spin, six-coordinate complex with proximal acetate and distal water axial ligands. The distal His-64 forms a hydrogen bond with the bound water. The Fe-acetate bonding geometry is inconsistent with an electron pair along the Fe-O bond as the Fe-O-C angle is 152 degrees and the Fe is far from the plane of the acetate. Thus, the Fe-O bonding is ionic. The H93G Mb cavity mutant has already been shown to be a versatile model system for the study of ligand binding to heme proteins; this investigation affords the first structural evidence that nonimidazole exogenous ligands bind in the proximal ligation site.  相似文献   

19.
The met-cyano complex of elephant myoglobin has been investigated by high field 1H NMR spectroscopy, with special emphasis on the use of exchangeable proton resonances in the heme cavity to obtain structural information on the distal glutamine. Analysis of the distance dependence of relaxation rates and the exchange behavior of the four hyperfine shifted labile proton resonances has led to the assignment of the proximal His-F8 ring and peptide NHs and the His-FG3 ring NH and the distal Gln-E7 amide NH. The similar hyperfine shift patterns for both the apparent heme resonances as well as the labile proton peaks of conserved resonances in elephant and sperm whale met-cyano myoglobins support very similar electronic/molecular structures for their heme cavities. The essentially identical dipolar shifts and dipolar relaxation times for the distal Gln-E7 side chain NH and the distal His-E7 ring NH in sperm whale myoglobin indicate that those labile protons occupy the same geometrical position relative to the iron and heme plane. This geometry is consistent with the distal residue hydrogen bonding to the coordinated ligand. The similar rates and identical mechanisms of exchange with bulk water of the labile protons for the three conserved residues in the elephant and sperm whale heme cavity indicate that the dynamic stability of the proximal side of the heme pocket is unaltered upon the substitution (His----Gln). The much slower exchange rate (by greater than 10(4] of the distal NH in elephant relative to sperm whale myoglobin supports the assignment of the resonance to the intrinsically less labile amide side chain.  相似文献   

20.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号