首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 593 毫秒
1.
真核细胞中囊泡膜与靶膜的融合是囊泡运输的关键环节,由进化保守的SNARE(soluble N-ethylmaleimide-sensitive factor attachment protein receptor)蛋白家族介导完成。SNARE蛋白可被分为定位于囊泡的R-SNARE(v-SNARE)和定位于靶膜的Q-SNARE(t-SNARE)两大类。R-SNARE与QSNARE的特异性配对形成“SNARE复合物”,该复合物可介导囊泡膜与靶膜融合。与酵母和动物相比,植物R-SNARE基因在进化过程中经历了大量扩增,推测其与植物细胞特有的胞内转运途径有关。该文综述了R-SNARE参与植物发育和胁迫响应的研究进展,结合其亚细胞定位信息探讨了不同RSNARE的作用靶位和调控特点,并对该领域研究前景进行了展望。  相似文献   

2.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

3.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

4.
在真核生物细胞囊泡运输过程中的膜融合主要是由SNARE蛋白介导的, SNARE蛋白的结构高度保守。研究发现, 植物中的SNARE蛋白促进植物细胞板形成, 能与离子通道蛋白相互作用, 有利于植物的正常生长发育, 能提高植物的抗病性及参与植物的向重力性作用。应用基因组学和蛋白质组学技术结合细胞学水平上的分析方法有助于深入揭示植物SNARE蛋白家族成员的功能, 明确SNARE蛋白在信号转导途径中的作用, 阐明动植物免疫系统的区别和联系。  相似文献   

5.
植物SNARE蛋白的结构与功能   总被引:5,自引:0,他引:5  
在真核生物细胞囊泡运输过程中的膜融合主要是由SNARE蛋白介导的,SNARE蛋白的结构高度保守.研究发现,植物中的SNARE蛋白促进植物细胞板形成,能与离子通道蛋白相互作用,有利于植物的正常生长发育,能提高植物的抗病性及参与植物的向重力性作用.应用基因组学和蛋白质组学技术结合细胞学水平上的分析方法有助于深入揭示植物SNARE蛋白家族成员的功能,明确SNARE蛋白在信号转导途径中的作用,阐明动植物免疫系统的区别和联系.  相似文献   

6.
赵翔  韩宝达  李立新 《遗传》2012,34(4):11-22
大多数细胞内都包含靶向不同细胞器的各种运输囊泡,其运输机制在进化上是高度保守的。Sec1/Munc-18(SM)蛋白在膜泡运输中起着重要的调控作用,它能够与SNARE(Soluble N-ethylmaleimide-sensitive factorattachment protein receptor)蛋白结合,共同在细胞内各个膜融合发生部位发挥重要作用。SM蛋白和SNARE复合体中的Syntaxin蛋白结合,调节SNARE复合体的装配,并与SNARE协同作用促进整个膜融合过程。文章对SM蛋白在结构和功能分析方面的最新研究进展进行了概述。  相似文献   

7.
膜泡运输是不同细胞器间进行物质传递的基本方式,分为4个重要步骤:囊泡的出芽、转运、拴系和融合。在此过程中,有许多相关因子参与调控,如包被蛋白、Rab蛋白、拴系因子、SM蛋白和SNARE等。拴系因子在运输囊泡和靶位膜发生接触的最初阶段起重要调控作用,多数拴系因子形成大的多亚基复合体发挥功能。目前,关于拴系因子的功能已经有了一定的了解,在此,我们对酵母、哺乳动物以及植物细胞中的已知拴系因子的特点和功能进行了概述。  相似文献   

8.
囊泡运输是真核细胞内细胞器间物质交流的重要手段,主要包括出芽、转运、拴系及膜融合四个环节.拴系因子调控运输囊泡与靶膜的初始接触,建立两者间的连接,并能够促进SNARE介导的膜融合过程.Exocyst是一个保守的八亚基拴系复合体,主要在胞吐过程中介导囊泡与细胞质膜的拴系过程.本文主要介绍exocyst复合体的结构和组装机...  相似文献   

9.
真核细胞的内吞和分泌途径中蛋白质和脂类的运输主要由膜泡运输介导。参与膜泡运输的蛋白质家族包括SNARE蛋白家族、RAB蛋白家族、被膜蛋白复合体、Sec1蛋白家族、Arf蛋白家族。这些蛋白质家族在进化中高度保守,并且在植物中已经鉴定了许多哺乳动物和酵母蛋白的同源物。近年来一些研究发现这些蛋白质不仅仅调节植物细胞的膜泡运输,还影响植物的许多生理活动和功能,例如向重性生长、胞质分裂、激素极性运输、气孔运动以及抗病性等。现主要阐述迄今在植物中研究这五类蛋白质家族功能的最新进展。  相似文献   

10.
内膜系统构成了细胞及细胞器之间的天然屏障,保证重要的生命活动在相对独立的空间内进行。细胞内膜性细胞器之间的物质(如蛋白质、脂类)的运输主要是通过囊泡完成的。囊泡运输需要货物分子、运输复合体、动力蛋白和微管等的参与以及多种分子的调节,包括出芽、锚定和融合等过程。从上世纪60年代开始,人们认识到细胞分泌的蛋白需要先进入内质网,再到高尔基体,然后分泌到其作用部位。之后,信号肽假说被提出和证明。随后的研究完善了囊泡运输的过程,包括经内质网到高尔基体的蛋白质分泌运输过程中关键的调控基因及其作用环节、蛋白质复合物SNARE(可溶性N-乙基马来酰亚胺敏感的融合蛋白附着蛋白受体)在囊泡锚定和融合中的作用机制等。在囊泡运输中的具有代表性的神经细胞突触囊泡中,触发突触囊泡融合的钙感受器(synaptotagmin)能快速准确地将钙信号传递到突触囊泡,通过与SNARE复合体等作用,实现与细胞膜融合并释放神经递质,最终完成神经信息的传递。该文从囊泡运输的研究历史回顾、已有研究成果以及未来展望等三个方面对囊泡运输分子细胞机制进行了阐述。  相似文献   

11.
The SNARE proteins are required for membrane fusion during intracellular vesicular transport and for its specificity. Only the unique combination of SNARE proteins (cognates) can be bound and can lead to membrane fusion, although the characteristics of the possible specificity of the binding combinations encoded in the SNARE sequences have not yet been determined. We discovered by whole genome sequence analysis that sequence motifs (conserved sequences) in the SNARE motif domains for each protein group correspond to localization sites or transport pathways. We claim that these motifs reflect the specificity of the binding combinations of SNARE motif domains. Using these motifs, we could classify SNARE proteins from 48 organisms into their localization sites or transport pathways. The classification result shows that more than 10 SNARE subgroups are kingdom specific and that the SNARE paralogs involved in the plasma membrane-related transport pathways have developed greater variations in higher animals and higher plants than those involved in the endoplasmic reticulum-related transport pathways throughout eukaryotic evolution.  相似文献   

12.
Zhao X  Han BD  Li LX 《遗传》2012,34(4):389-400
Most cells contain various transport vesicles that target to different destinations. The underlying molecular mechanisms are highly conserved in evolution. Sec1/Munc-18 (SM) proteins play an important role on regulating vesicle transport by interacting with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at each vesicle fusion sites. SM proteins interact with syntaxin, an important component in SNARE complex, to regulate the assembly of SNARE complex, and promote overall membrane fusion process together with SNARE complex. This review summaries new research progresses of structure and function of SM protein.  相似文献   

13.
SNARE proteins control intracellular membrane fusion through formation of membrane-bridging helix bundles of amphipathic SNARE motifs. Repetitive cycles of membrane fusion likely involve repetitive folding/unfolding of the SNARE motif helical structure. Despite these conformational demands, little is known about conformational regulation of SNAREs by other proteins. Here we demonstrate that hsc70 chaperones stimulate in vitro SNARE complex formation among the ER/Golgi SNAREs syntaxin 5, membrin, rbetl and sec22b, under conditions in which assembly is normally inhibited. Thus, molecular chaperones can render the SNARE motif more competent for assembly. Partially purified hsc70 fractions from brain cytosol had higher specific activities than fully purified hsc70, suggesting the involvement of unidentified cofactors. Using chemical crosslinking of cells followed by immunoprecipitation, we found that hsc70 was associated with ER/Golgi SNAREs in vivo. Consistent with a modulatory role for hsc70 in transport, we found that excess hsc70 specifically inhibited ER-to-Golgi transport in permeabilized cells.  相似文献   

14.
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically ∼10%) were sufficient for a substantial amount of SNARE–SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.  相似文献   

15.
Vesicle trafficking: pleasure and pain from SM genes   总被引:21,自引:0,他引:21  
Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central aspect of the final fusion reaction in many, if not all, routes and that SNARE complexes in different routes and species form in a similar manner. It is also evident that a second gene family, the Sec1/Munc18 genes (SM genes), plays a prominent role in vesicle trafficking. But, in contrast to the consensus and clarity about SNARE proteins, recent data on SM proteins in different systems produce an uncomfortable heterogeneity of ideas about their exact role, their site of action and their relation to SNARE proteins. This review examines whether a universal principle for the molecular function of SM genes exists and whether the divergence in SM gene function can be related to the unique characteristics of different transport routes.  相似文献   

16.
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N terminus of vti1b we performed a yeast two-hybrid screen. The N terminus of vti1b interacted specifically with the epsin N-terminal homology (ENTH) domain of enthoprotin/CLINT/epsinR. The interaction was confirmed using in vitro binding assays. This complex formation between a SNARE and an ENTH domain was conserved between mammals and yeast. Yeast Vti1p interacted with the ENTH domain of Ent3p. ENTH proteins are involved in the formation of clathrin-coated vesicles. Both epsinR and Ent3p bind adaptor proteins at the trans-Golgi network. Vti1p is required for multiple transport steps in the endosomal system. Genetic interactions between VTI1 and ENT3 were investigated. Synthetic defects suggested that Vti1p and Ent3p cooperate in transport from the trans-Golgi network to the prevacuolar endosome. Our experiments identified the first cytoplasmic protein binding to specific ENTH domains. These results point toward a novel function of the ENTH domain and a connection between proteins that function either in vesicle formation or in vesicle fusion.  相似文献   

17.
Soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptors (SNAREs) are core machinery for membrane fusion during intracellular vesicular transport. Synaptosome-associated protein of 23 kDa (SNAP23) is a target SNARE previously identified at the plasma membrane, where it is involved in exocytotic membrane fusion. Here we show that SNAP23 associates with vimentin filaments in a Triton X-100 insoluble fraction in fibroblasts in primary culture and HeLa cells. Upon treatment of human fibroblasts with N-ethyl-maleimide, SNAP23 dissociates from vimentin filaments and forms a protein complex with syntaxin 4, a plasma membrane SNARE. The vimentin-associated pool of SNAP23 can therefore be a reservoir, which would supply the plasma membrane fusion machinery, in fibroblasts. Our observation points to a yet unexplored role of intermediate filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号