共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
高等植物蔗糖转运的分子调控 总被引:2,自引:0,他引:2
在高等植物中,蔗糖的合成、运输与分配是一个复杂的过程。蔗糖由源到库的运输不仅与植物的生长发育相关,还受到植物体内的激素水平以及外界环境条件变化等因素的影响。蔗糖转运蛋白介导了蔗糖在植物韧皮部的装载、运输和卸载,在某些库中的蔗糖转运和库组织分配的分子调控中起有重要的生理作用。此外,简要介绍了笔者实验室在橡胶树蔗糖转运蛋白基因研究方面的最新进展。 相似文献
6.
植物蔗糖转运蛋白及其功能调节研究进展 总被引:1,自引:0,他引:1
王利芬;张虎平;张绍铃 《植物研究》2012,32(4):501-507
综述了高等植物蔗糖转运蛋白基因家族的分类,蔗糖转运蛋白的细胞定位,蔗糖转运蛋白的功能调节,以及果实中糖运转的特性等方面的研究进展,并提出了深入研究果实蔗糖运转蛋白的展望。 相似文献
7.
蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输和为库组织供应蔗糖的生理活动中起关键作用。本文介绍植物体内蔗糖转运蛋白基因家族、细胞定位与功能调节以及高等植物的蔗糖感受机制的研究进展。 相似文献
8.
9.
植物蔗糖转运蛋白的基因与功能 总被引:16,自引:0,他引:16
蔗糖是植物体内碳水化合物长距离转运的主要(甚至唯一)形式,为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输,以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来,已先后有多个SUT基因的cDNA得到克隆与功能分析,涉及34种双子叶与单子叶植物。每种植物都有一个中等规模的SUT基因家族,其不同成员之间具有较高的氨基酸序列同源性,但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能,以及研究方法等方面的研究进展,并简要介绍我们在橡胶树SUT基因研究上的初步结果。 相似文献
10.
蔗糖是植物体内碳水化合物长距离转运的主要( 甚至唯一) 形式, 为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter, SUT)负责蔗糖的跨膜运输, 在韧皮部介导的源-库蔗糖运输, 以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来, 已先后有多个SUT基因的cDNA得到克隆与功能分析, 涉及34种双子叶与单子叶植物。每种植物都有一个中等规模
的SUT基因家族, 其不同成员之间具有较高的氨基酸序列同源性, 但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能, 以及研究方法等方面的研究进展, 并简要介绍我们在橡胶树SUT基因研究上的初步结果。 相似文献
11.
Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways 总被引:16,自引:0,他引:16
Hackel A Schauer N Carrari F Fernie AR Grimm B Kühn C 《The Plant journal : for cell and molecular biology》2006,45(2):180-192
Sucrose transporters of higher plants belong to a large gene family. At least four different sucrose transporters are known in Solanaceous plants, although their function remains to be elucidated in detail. The isolation of LeSUT1 and LeSUT2 from Lycopersicon esculentum has been described earlier. Whereas SUT1 is supposed to be the main phloem loader of sucrose in Solanaceae , the role of SUT2 remains a matter of debate. A transgenic approach was taken to evaluate the potential functions of SUT2/SUC3 proteins in sucrose transport or sensing. Expression of LeSUT1 and LeSUT2 was inhibited independently in transgenic tomato plants, using the antisense technique, in order to analyse their specific functions. Although the phloem-specific inhibition of LeSUT1 antisense plants showed a phenotype consistent with an essential role in phloem loading, constitutive LeSUT2 antisense inhibition exclusively affected tomato fruit and seed development. Neither LeSUT1 , nor the LeSUT2 antisense plants were able to produce normal tomato fruits; however, it is likely that independent mechanisms underlie these phenomena. While phloem loading was blocked in LeSUT1 antisense plants, the fertility of fruits was reduced in LeSUT2 antisense plants. A detailed physiological analysis of these plants established a role for SUT2 in pollen tube growth and thus assigned a physiological role for SUT2. 相似文献
12.
The mechanism of phloem loading in rice (Oryza sativa) 总被引:1,自引:0,他引:1
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity. 相似文献
13.
The unloading of sucrose in the apical part of the hypocotyl of Ricinus communis L. seedlings was measured by 13C-nuclear magnetic resonance (NMR) spectroscopy. The cotyledons of the seedling were immersed in 5 mM Mes buffer containing
100 mM 13C-labeled sucrose. At intervals of 70–90 min, 13C-NMR spectra with broadband decoupling and nuclear Overhauser enhancement were acquired in vivo. The spectra showed growing 13C-resonances of the labeled positions in the sucrose molecule reaching steady-state labeling within 7–8 h. The specific 13C labeling of sucrose in the G1-position changed from 0.38 in the supplied sucrose solution to 0.16 in the sucrose extracted from the hypocotyl piece at
the end of the experiment (13 h). Labeling of starch (and other insolubles) in the hypocotyl piece was ca. 0.10. It is proposed
that the decreased specific labeling of unloaded sucrose is mostly due to the separate local pools of sucrose in the cortex
and pith parenchyma, respectively, and less to continuous starch degradation and conversion to sucrose. The report gives an
example of the application of 13C-NMR spectroscopy in assimilate allocation studies.
Received: 10 October 1998 / Accepted: 31 December 1998 相似文献
14.
Mature leaves of a variegated cultivar of Coleus blumei Benth. with a green border and central albino region constitute a source-sink system suitable for studies on assimilate partitioning. Leaves treated with 14CO2 on a small part of the intact green border export assimilate via the shortest path into the stem. Leaves with all but a small lobe of the green border removed show different partitioning of labeled assimilates when the leaf is exposed to 14CO2 (Fisher and Eschrich, 1985): The whole albino region of the leaf is supplied but no tracer is exported into the stem. When the green border is completely removed, 14CO2-treatment of the albino region leads to the fixation of CO2, obviously by PEP carboxylase, as indicated by the occurrence of labeled malate. Results show that the albino region of the variegated leaf constitutes a potential sink when deprived of its green border. In addition, CO2-fixation by PEP carboxylase in albino tissue seems to indicate a common capacity of leaves which is normally masked by photosynthesis. The difference of assimilate partitioning between leaves with intact and leaves with partly removed green borders demonstrates that the unlabeled assimilates control the movement of labeled assimilates. 相似文献
15.
T. E. HUMPHREYS 《Plant, cell & environment》1987,10(3):259-266
Abstract During incubation of maize scutellum slices in fructose, there was an efflux of sucrose. Efflux was constant for at least 4 h at fructose concentrations of 70 or 100 mol m?3. Efflux was increased by EDTA, and decreased by Ca2+. Efflux was independent of pH after EDTA treatment, but increased from untreated slices when the pH was lowered from 7 to 4. Uranyl ion and PCMBS (p-chloro-mercuribenzenesulfonic acid) abolished sucrose uptake, but were only weak inhibitors of sucrose efflux. These results are consistent with efflux occurring by simple diffusion through aqueous pores, but they do not rule out facilitated diffusion. Rates of sucrose export from the scutellum to the root shoot axis were estimated from measurements of axis respiration and dry weight gain. Sucrose efflux from scutellum slices was only 14-22% of the export rate. Sucrose efflux from the whole scutellum was only 3-4% of the export rate. It is concluded that the observed efflux is from leaky cells and does not represent sucrose on the way to the phloem along a path that includes the apoplast. These results support the idea that the path for sucrose from parenchyma cell to sieve tube in the maize scutellum is entirely symplastic. 相似文献
16.
17.
植物光合作用产生的蔗糖是植物生长发育的主要碳源物质,还是诱导植物生长发育过程中诸多相关基因表达的特异信号分子[1].蔗糖分子在植物器官及组织间的生理分配维持着整个植物体的正常生长发育[2].植物蔗糖转运载体(sucrosetransporter,SUT)是一类担负着蔗糖分子在细胞间的转运及信号转导的功能性蛋白家族,它在蔗糖的韧皮部装载、沿韧皮部的再吸收、韧皮部卸载和向库器官的转运等跨膜运输以及蔗糖特异信号感应过程中发挥着重要的生理功能[3~5].植物蔗糖转运载体蛋白分布于植物细胞质膜上,该转运载体蛋白含有12个疏水性跨膜结构域,在其氨… 相似文献
18.
苹果中磷酸蔗糖合酶家族基因的表达特性及其与蔗糖含量的关系 总被引:1,自引:0,他引:1
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。 相似文献
19.
植物体内光合同化物韧皮部装载和卸出研究进展 总被引:2,自引:0,他引:2
近年来研究表明,植物体内光合同化物的韧皮部装载和卸出均有其本途径和质外体途径,装载转运的糖类主要有:(2)棉子糖及其人类似物(以共质体方式装载);(2)蔗糖(以质外体方式装载)。同化物的共质体卸出可通过扩散和集中作用实现,而质外体卸出则根据蔗糖在质外体是否水解而分为两种类型。卸出和装载的途径、机理因植物种类及库源关系而不同,也会受生长发育阶段及环境的变化而调整。深入研究韧皮部装载和帛出调控机制,对 相似文献