首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A cDNA encoding the simian-human immunodeficiency virus (SHIV 89.6p) Tat regulatory element protein was fused to the c-terminus of the cholera toxin B subunit gene (ctxB-tat) and introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods. The fusion gene was detected in the genomic DNA of transformed potato leaf cells by PCR DNA amplification. Synthesis and assembly of the CTB-Tat fusion protein into oligomeric structures of pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding of CTB-Tat fusion protein pentamers to intestinal epithelial cell membrane glycolipid receptors was quantified by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). Based on the ELISA results, CTB-Tat fusion protein made up about 0.005-0.007% of total soluble tuber protein or approximately 4.6mg per 100g potato tuber tissue. The synthesis and assembly of CTB-Tat monomers into biologically active oligomers in transformed potato tuber tissues demonstrates the feasibility of using viral pathogen antigens synthesized in edible plants for mucosal immunization against HIV-1 infection.  相似文献   

2.
A deoxyribonucleic acid (DNA) fragment encoding the cholera toxin B subunit (CTB) was linked 5′ to the simian immunodeficiency virus (SIVmac) Gag p27 capsid gene (CTB-Gag). The fusion gene was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The CTB-Gag gene fusion was detected in transformed potato leaf genomic DNA by polymerase chain reaction-mediated DNA amplification. The results of immunoblot analysis with anti-CTB and anti-Gag antibodies verified the synthesis of biologically active CTB-Gag fusion protein in transformed leaf and tuber tissues. Synthesis and assembly of the CTB-Gag fusion protein into oligomeric structures of pentamer size was confirmed by GM1-ganglioside-enzyme-linked immunosorbent assay (GM1-ELISA) of transformed potato tuber tissue extracts. The binding of CTB-Gag fusion protein oligomers to intestinal epithelial cell membrane receptors quantified by GM1-ELISA showed that CTB-Gag fusion protein made up approx 0.016–0.022% of the total soluble tuber protein. The synthesis of CTB-Gag monomers and their assembly into biologically active CTB-Gag fusion protein oligomers in potato tuber tissues provides the opportunity for employment of the carrier and adjuvant properties of CTB for the development of edible plant-based subunit mucosal vaccines for enhanced mucosal immunity against SIV in macaques.  相似文献   

3.
A gene encoding VP7, the outer capsid protein of simian rotavirus SA11, was fused to the carboxyl terminus of the cholera toxin B subunit gene. A plant expression vector containing the fusion gene under control of the mannopine synthase P2 promoter was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB::VP7 fusion gene was detected in the genomic DNA of transformed potato leaf cells by polymerase chain reaction (PCR) amplification methods. Immunoblot analysis of transformed potato tuber tissue extracts showed that synthesis and assembly of the CTB::VP7 fusion protein into oligomers of pentameric size occurred in the transformed plant cells. The binding of CTB::VP7 fusion protein pentamers to sialo-sugar containing GM1 ganglioside receptors on the intestinal epithelial cell membrane was quantified by enzyme-linked immunosorbent assay (ELISA). The ELISA results showed that the CTB::VP7 fusion protein made up approx 0.01% of the total soluble tuber protein. Synthesis and assembly of CTB::VP7 monomers into biologically active pentamers in transformed potato tubers demonstrates the feasibility of using edible plants as a mucosal vaccine for the production and delivery system for rotavirus capsid protein antigens.  相似文献   

4.
A DNA encoding the 27-kDa domain I of anthrax lethal factor protein (LF), was linked to the carboxyl terminus of the cholera toxin B-subunit (CTB-LF). The CTB-LF fusion gene was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated in vivo transformation methods and antibiotic-resistant plants were regenerated. The CTB-LF fusion gene was detected in transformed potato leaf genomic DNA by polymerase chain reaction (PCR)-mediated DNA amplification. Immunoblot analysis with anti-CTB and anti-LF primary antibodies verified the synthesis and assembly of biologically active CTB-LF fusion protein oligomers in transformed plant tuber tissues. Furthermore, the binding of CTB-LF fusion protein pentamers to intestinal epithelial cell membrane receptors measured by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA) indicated that the CTB-LF fusion protein made up approx 0.002% of the total soluble tuber protein. Synthesis of CTB-LF monomers and their assembly into biologically active CTB-LF fusion protein pentamers in potato tuber tissues demonstrates the feasibility of using edible plants for production and delivery of adjuvanted LF protein for CTB-mediated immunostimulation of mucosal immune responses against anthrax toxin.  相似文献   

5.
A cDNA fragment encoding the V3 loop of human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein gp120 was fused to the cholera toxin B subunit gene (CTB-gp120) and transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB-gp120 fusion gene was detected in genomic DNA from transformed potato leaves by PCR DNA amplification. Synthesis and assembly of the CTB-gp120 fusion protein into oligomeric structures of pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding of CTB-gp120 fusion protein pentamers to intestinal epithelial cell membrane glycolipid receptors was quantified by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA results indicated that CTB-gp120 fusion protein made up 0.002-0.004% of the total soluble tuber protein. Synthesis of CTB-gp120 monomers and their assembly into biologically active oligomers in transformed potato tuber tissues demonstrates for the first time the expression of HIV-1 gp120 in plants and emphasizes the feasibility of using edible plant-based vaccination for protection against HIV-1 infection.  相似文献   

6.
A gene encoding the outer capsid glycoprotein (VP7) of simian rotavirus SA11, was genetically linked to the amino terminus of the ricin toxin B subunit (RTB) isolated from castor-oil plant (Ricinus communis) seeds. To assess fusion protein expression in plant cells, the VP7::RTB fussion gene was transferred into potato (Solanum tuberosum) cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The fusion gene was detected in transformed potato genomic DNA by polymerase chain reaction DNA amplification methods. Immunoblot analysis with anti-SA11 antiserum as the primary antibody verified the presence of VP7::RTB fusion protein in transformed potato tuber tissues. The plant-synthesized fusion protein bound RTB membrane receptors as measured by asialofetuin-enzyme-linked immunosorbent assay (ELISA). The ELISA results indicated that the VP7::RTB fusion protein was biologically active and made up approx 0.03% of total soluble transformed tuber protein. The biosynthesis of receptor binding VP7::RTB fusion protein in potato tissues demonstrates the feasibility of producing monomeric ricin toxin B subunit adjuvant-virus antigen fusion proteins in crop plants for enhanced immunity.  相似文献   

7.
A DNA fragment encoding a 12-amino acid (aa) HIV-1 Tat transduction peptide fused to a 90-aa murine rotavirus NSP4 enterotoxin protein (Tat-NSP490) was transferred to Solanum tuberosum by Agrobacterium tumefaciens-mediated transformation. The fusion gene was detected in the genomic DNA of transformed plant leaf tissues by PCR DNA amplification. The Tat-NSP490 fusion protein was identified in transformed tuber extracts by immunoblot analysis using anti-NSP490 and anti-Tat as the primary antibodies. Enzyme-linked immunosorbent assay results showed that the Tat-NSP490 fusion protein made up to 0.0015% of the total soluble tuber protein. The synthesis of Tat-NSP490 fusion protein in transformed potato tuber tissues demonstrates the feasibility of plant cell delivery of the HIV-1 Tat transduction domain as a carrier for non-specific targeting of fused antigens to the mucosal immune system.Abbreviations APC Antigen-presenting cells - BA Benzyladenine - BSA Bovine serum albumin - CT Cholera toxin - CTB Cholera toxin B subunit - CTL Cytotoxic T lymphocytes - 2,4-D 2,4-Dichlorophenoxyacetic acid - ELISA Enzyme-linked immunosorbent assay - HIV-1 Human immunodeficiency virus type 1 - MHC Major histocompatibility complex - IAA Indole-3-acetic acid - NAA -Naphthaleneacetic acid - NPT II Neomycin phosphotransferase II - NSP4 Rotavirus enterotoxin non-structural protein - PBS Phosphate-buffered saline - PBST Phosphate-buffered saline containing 0.05% Tween-20 - PTD Protein transduction domain Communicated by W.A. Parrott  相似文献   

8.
Escherichia coli heat-labile enterotoxin B subunit (LTB) strongly induces immune responses and can be used as an adjuvant for co-administered antigens. Synthetic LTB (sLTB) based on optimal codon usage by plants was introduced into lettuce cells (Lactuca sativa) by Agrobacterium tumefaciens-mediated transformation methods. The sLTB gene was detected in the genomic DNA of transgenic lettuce leaf cells by PCR DNA amplification. Synthesis and assembly of the sLTB protein into oligomeric structures of pentameric size was observed in transgenic plant extracts using Western blot analysis. The binding of sLTB pentamers to intestinal epithelial cell membrane glycolipid receptors was confirmed by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). Based on the results of ELISA, sLTB protein comprised approximately 1.0-2.0% of total soluble protein in transgenic lettuce leaf tissues. The synthesis and assembly of sLTB monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of the use of edible plant-based vaccines consumed in the form of raw plant materials to induce mucosal immunity.  相似文献   

9.
The gram-negative anaerobic oral bacterium Porphyromonas gingivalis initiates periodontal disease by binding to saliva-coated oral surfaces. To assess whether edible plants can synthesize biologically active P. gingivalis fimbrial antigen, for application as an oral vaccine, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein (FimA), was cloned into a plant expression vector immediately downstream of a cDNA fragment encoding the cholera toxin B subunit (CTB). The chimeric plasmid was transferred into potato (Solanum tuberosum) cells and the ctb-fimA cDNA fragment detected in transformed leaf genomic DNA by PCR amplification methods. A novel protein band of 21 kDa was detected in transformed potato tuber extracts by immunoblot analysis. Oligomeric CTB-FimA (266-337) fusion protein was identified in the extracts through the binding of anti-CTX and anti-native fimbriae antibodies. The pentameric structure of CTB-FimA fusion protein was confirmed by ELISA measurements of GM1 ganglioside receptor binding. Quantification of the CTB-FimA fusion protein by ELISA indicated that the chimeric protein made up about 0.33% of total soluble tuber protein. The biosynthesis of immunologically detectable CTB-FimA fusion proteins and the assembly of fusion protein monomers into biologically active pentamers in transformed potato tuber tissues demonstrate the feasibility of synthesizing adjuvanted fimbrial protein in edible plants for development of adjuvanted mucosal vaccines against P. gingivalis generated periodontal disease.  相似文献   

10.
A plant-based multicomponent vaccine protects mice from enteric diseases   总被引:28,自引:0,他引:28  
Cholera toxin (CT) B and A2 subunit complementary DNAs (cDNAs) were fused to a rotavirus enterotoxin and enterotoxigenic Escherichia coli fimbrial antigen genes and transferred into potato. Immunoblot and enzyme-linked immunosorbent assay (ELISA) results indicated that the fusion antigens were synthesized in transformed tuber tissues and assembled into cholera holotoxin-like structures that retained enterocyte-binding affinity. Orally immunized mice generated detectable levels of serum and intestinal antibodies against the pathogen antigens. Elevated levels of interleukin 2 (IL2) and interferon gamma (INFgamma) detected in immunogen-challenged spleen cells from the immunized mice indicated the presence of a strong Th1 immune response to the three plant-synthesized antigens. This result was supported by flow cytometry analysis of immunized mouse spleen cells that showed a significant increase in CD4+ lymphocyte numbers. Diarrhea symptoms were reduced in severity and duration in passively immunized mouse neonates following rotavirus challenge. The results suggest that food plants can function as vaccines for simultaneous protection against infectious virus and bacterial diseases.  相似文献   

11.
SIVmac Gag p27 capsid protein gene expression in potato   总被引:3,自引:0,他引:3  
A cDNA encoding the Simian immunodeficiency virus type (SIV(mac)) Gag capsid protein was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods. The gag gene was detected in the genomic DNA of transformed leaf tissues by PCR DNA amplification. Immunoblot analysis of transformed potato plant extracts with anti-Gag monoclonal antibody showed that biologically active Gag protein was synthesized in transformed tuber tissues. Based on ELISA results, recombinant Gag protein made up 0.006-0.014% of total soluble tuber protein. The synthesis of SIV Gag in transformed potato tubers opens the way for development of Gag-based edible plant vaccines for protection against SIV and potentially HIV-1 infection.  相似文献   

12.
Plant-based vaccines have been produced in transgenic plants including tobacco, potatoes, corn, and rice. However, these plants are not suitable for administration without cooking. To overcome this obstacle, a fusion gene encoding the synthetic enterotoxigenic Escherichia coli heat-labile enterotoxin B subunit genetically fused with a synthetic neutralizing epitope of porcine epidemic diarrhea virus (sLTB-sCOE) was introduced into lettuce cells (Lactuca sativa) by Agrobacterium-mediated transformation methods. The integration and expression of the sLTB-sCOE fusion gene was confirmed in transgenic lettuce by genomic DNA PCR amplification and Northern blot analysis, respectively. Synthesis and assembly of the LTB-COE fusion protein into oligomeric structures with pentamer size were observed in transgenic plant extracts by Western blot analysis with anti-LTB or anti-COE antibodies. The binding of plantproduced LTB-COE to intestinal epithelial cell membrane glycolipid receptors was confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). Based on the ELISA results, LTB-COE fusion protein made up about 0.026∼0.048% of the total soluble protein in the transgenic lettuce leaf tissues. The synthesis and assembly of LTB-COE monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of using uncooked edible plant-based vaccines for mucosal immunization.  相似文献   

13.
Zhang M  Zeng CQ  Morris AP  Estes MK 《Journal of virology》2000,74(24):11663-11670
Previous studies have shown that the nonstructural glycoprotein NSP4 plays a role in rotavirus pathogenesis by functioning as an enterotoxin. One prediction of the mechanism of action of this enterotoxin was that it is secreted from virus-infected cells. In this study, the media of cultured (i) insect cells infected with a recombinant baculovirus expressing NSP4, (ii) monkey kidney (MA104) cells infected with the simian (SA11) or porcine attenuated (OSU-a) rotavirus, and (iii) human intestinal (HT29) cells infected with SA11 were examined to determine if NSP4 was detectable. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-Western blotting, immunoprecipitation and N-terminal amino acid sequencing identified, in the early media from virus-infected cells, a secreted, cleavage product of NSP4 with an apparent molecular weight of 7,000 that represented amino acids 112 to 175 (NSP4 aa112-175). The secretion of NSP4 aa112-175 was not affected by treatment of cells with brefeldin A but was abolished by treatment with nocodazole and cytochalasin D, indicating that secretion of this protein occurs via a nonclassical, Golgi apparatus-independent mechanism that utilizes the microtubule and actin microfilament network. A partial gene fragment coding for NSP4 aa112-175 was cloned and expressed using the baculovirus-insect cell system. Purified NSP4 aa112-175 increased intracellular calcium mobilization in intestinal cells when added exogenously, and in insect cells when expressed endogenously, similarly to full-length NSP4. NSP4 aa112-175 caused diarrhea in neonatal mice, as did full-length NSP4. These results indicate that NSP4 aa112-175 is a functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells.  相似文献   

14.
Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266–337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266–337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.  相似文献   

15.
周鹤峰  邵敏  葛正龙 《广西植物》2005,25(4):353-355,i0002
采用浸苗法将野生天麻总DNA导入马铃薯试管苗,对筛选得到的转化植株进行蛋白及药用成份的分析。结果显示:(1)在200株转化的马铃薯中有21株的紫外扫描图谱与正常对照组有显著差异,且在220nm有明显吸收峰。(2)5株经PCR扩增出野生天麻抗真菌蛋白(GAFP)基因。(3)转基因马铃薯与正常马铃薯的蛋白表达有明显差异,并且在转基因马铃薯中有一条与野生天麻抗真菌蛋白(GAFP)相同的条带。而正常马铃薯中无此条带。(4)通过薄层层析法检测出3株转基因马铃薯表达野生天麻的有效药用成份天麻素。说明采用浸苗法进行外源总DNA导入是可行的。  相似文献   

16.
17.
18.
19.
A gene encoding the B subunit of the enterotoxigenic Escherichia coli heat-labile enterotoxin (LTB) was adapted to the optimized plant coding sequence, and fused to the endoplasmic reticulum retention signal SEKDEL in order to enhance its expression level and protein assembly in plants. The synthetic LTB (sLTB) gene was placed into a plant expression vector under the control of the CaMV 35S promoter, and subsequently introduced into the watercress (Nasturtium officinale L.) plant by the Agrobacterium-mediated transformation method. The integration of the sLTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The assembly of plant-produced LTB protein was detected by western blot analysis. The highest amount of LTB protein produced in transgenic watercress leaf tissue was approximately 1.3% of the total soluble plant protein. GM1-ganglioside enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is the receptor for biologically active LTB on the cell surface, suggesting that the plant-synthesized LTB subunits formed biologically active pentamers.  相似文献   

20.
表达大肠杆菌K88ac-ST1-LTB融合蛋白基因工程菌株的构建   总被引:15,自引:2,他引:13  
利用PCR技术,从大肠杆菌C83902质粒中扩增出K88ac基因、ST1突变基因和LTB基因,通过分离、纯化、内切酶酶切、连接和转化,构建了含K88ac-ST1-LTB融合基因表达载体的重组菌株BL21(DE3)(pXKST3LT5)。经酶切鉴定和DNA序列分析证实,构建的重组质粒pXKST3LT5中含有K88ac-ST1-LTB融合基因,且基因序列和阅读框架均正确。经ELISA检测,重组菌株表达的K88ac-ST1-LTB融合蛋白能够被ST1单抗、LTB和K88ac抗体识别。经乳鼠灌胃试验证实,表达的融合蛋白已丧失天然ST1肠毒素的活性。免疫实验结果表明,K88ac-ST1-LTB融合蛋白能够诱发小白鼠产生抗体,该抗体具有中和天然ST1肠毒素的毒性作用,表明构建的重组菌株可以作为预防仔猪黄、白痢基因工程菌苗的候选菌株。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号