首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH > or = 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:H7, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. 55Fe transport assays confirm the ferrous iron specificity of EfeUOB.  相似文献   

2.
Outer membrane proteins of various strains of Escherichia coli were compared using three different systems of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The outer membranes of E. coli K-12, E. coli B, and E. coli J-5 had distinctive protein compositions. As regards proteins which interact with peptidoglycan, E. coli K-12 contained O-8 and O-9, while E. coli B possessed one protein which migrated to the position of O-9. Although E. coli J-5 possessed two such proteins, O-8' and O-9', their positions on polyacrylamide gel were different from those of O-8 and O-9. Protein O-7, which migrates slightly more slowly than O-8, was found specifically in E. coli K-12. Proteins O-10 and O-11 were found in all strains tested, although the relative amounts were different depending on the strain. Strains of E. coli K-12 and E. coli J-5 gave three major bands, O-2a, O-2b, and O-3, in the region of high molecular weight. These proteins were repressed by iron in the cultivation media. Strains of E. coli B, on the other hand, gave only O-2b and O-3. E. coli J-5 gave two other major bands in this region, but the amounts were not controlled by iron in the cultivation media.  相似文献   

3.
The penicillin G acylase genes from the Proteus rettgeri wild type and from a hyperproducing mutant which is resistant to succinate repression were cloned in Escherichia coli K-12. Expression of both wild-type and mutant P. rettgeri acylase genes in E. coli K-12 was independent of orientation in the cloning vehicle and apparently resulted from recognition in E. coli of the P. rettgeri promoter sequences. The P. rettgeri acylase was secreted into the E. coli periplasmic space and was composed of subunits electrophoretically identical to those made in P. rettgeri. Expression of these genes in E. coli K-12 was not repressed by succinate as it is in P. rettgeri. Instead, expression of the enzymes was regulated by glucose catabolite repression.  相似文献   

4.
Multiple-drug-resistant strains of Escherichia coli were isolated from the water at an estuarine site. They represented about 8.3% of the total E. coli population. Fifty-five strains, representing each of the 32 resistance patterns identified, were mated with an E. coli K-12 F- strain. Matings were performed on membrane filters, and the cells were washed to remove any colicins produced by the donors. Thirty-one strains, about 5% of the mean E. coli density in the samples, transferred drug resistance and, hence, posessed conjugative R plasmids. Of these, 80% transferred drug resistance at a frequency of about 10(-4) or less. Nine environmental R+ strains were mated with three fecal recipients. The R-plasmid transfer frequencies to the fecal strains from the environmental donors correlated well with those from a derepressed K-12 R+ laboratory donor. The R+ X K-12 F- lac- transconjugants from 16 environmental strains were "backcrossed" to a lac+ K-12 F- strain. All transfer frequencies were higher in the backcrosses than in the original matings from the environmental donor. Furthermore, 7 of 13 different transconjugants, which accepted plasmids at repressed frequencies of less than 10(-3), donated them at frequencies greater than 10(-2). This suggests that these were derepressed plasmids in a repressed host.  相似文献   

5.
We have cloned chromosomal genes determining the aerobactin iron transport system from the Escherichia coli K1 strain VW187. Mapping and hybridization experiments showed that the VW187 aerobactin region was identical to that of the plasmid ColV-K30. However, in the E. coli K-12 background, the biosynthesis of both siderophore and ferric aerobactin receptor encoded by the VW187-derived recombinant plasmids was not repressed by iron to the same extent found when a recombinant plasmid derived from pColV-K30 was used. RNA-DNA dot-blot hybridization experiments demonstrated that the aerobactin-specific mRNA synthesized by the VW187-derived clones was not iron regulated in E. coli K-12. In contrast, the synthesis of aerobactin and its receptor in strain VW187 was completely repressed by iron regardless of whether the recombinant plasmids originated from VW187 or pColV-K30. Similar results were obtained with gene fusions in which a promoterless lac operon was placed under the control of aerobactin promoter regions of either chromosome- or plasmid-mediated aerobactin systems. DNA sequencing of the chromosomal aerobactin promoter region showed changes in bases located immediately upstream to the -35 region compared with the corresponding region in pColV-K30, which is known to be part of the binding site for the Fur repressor protein.  相似文献   

6.
Cytochemical Localization of Certain Phosphatases in Escherichia coli   总被引:19,自引:12,他引:7       下载免费PDF全文
Cytochemical studies of Escherichia coli at the light and electron microscopic levels have revealed alkaline phosphatase, hexose monophosphatase, and cyclic phosphodiesterase reaction products in the periplasmic space and at the cell surface. In preparations for both light and electron microscopy, reaction product filled polar caplike enlargements of the periplasmic space, such as those described in plasmolyzed cells, indicating significant terminal concentrations of these enzymes; dense substance was often seen within these polar caps in morphological specimens. Staining of the bacterial surface was commonly encountered, but could represent artifactual accumulation of precipitate along the cell wall. Alkaline phosphatase was demonstrated with several substrates (ethanolamine phosphate, glycerophosphate, p-nitrophenylphosphate, and glucose-6-phosphate) over a wide pH range in a bacterial strain (C-90) known to be constitutive for this enzyme, whereas strains deficient in this enzyme (U-7, repressed K-37), showed no activity with these substrates. Hexose monophosphatase and cyclic phosphodiesterase activities were characterized by reaction-product deposition with specific substrates at acid or neutral, but not at alkaline, pH in strains of E. coli lacking alkaline phosphatase (U-7 and repressed K-37). Fixation in Formalin or the use of calcium as a capture reagent seemed to interfere with periplasmic staining in cells prepared for electron microscopy. Formalin fixation had little effect on biochemical assays of the phosphatase activity of intact cells in suspension, but partially reduced the activity evident in sonically treated extracts or in suspensions of dispersed cryostat sections. Glutaraldehyde treatment impaired enzyme activity more drastically.  相似文献   

7.
We subcloned the structural gene for exotoxin A (ETA) of Pseudomonas aeruginosa in front of the tac promoter in an Escherichia coli expression vector and studied the intracellular location and properties of the protein product. The E. coli K-12 strain that carried this recombinant plasmid produced an immunoreactive protein that was identical to authentic ETA in size and in cytotoxic and ADP-ribosyl transferase activities per unit of immunoreactive material. The protein was predominantly in the periplasmic fraction; and a mutation in the secA gene blocked secretion, processing, and conversion of the protein to a fully toxic conformation. The results indicate that expression of the ETA gene in E. coli yields native ETA, which is localized within the periplasmic space. This organism may therefore serve as a useful host for studying structure and function in ETA.  相似文献   

8.
Glutathione protects cells and organisms from oxygen species and peroxides and is indispensable for aerobically living organisms. Moreover, it acts against xenobiotics and drugs by the formation and excretion of glutathione S conjugates. In this study, we show that the yliA, -B, -C, and -D genes of Escherichia coli K-12 encode a glutathione transporter with the ATP-binding cassette. The transporter imports extracellular glutathione into the cytoplasm in an ATP-dependent manner. This transporter, along with gamma-glutamyltranspeptidase, has an important role in E. coli growth with glutathione as a sole sulfur source.  相似文献   

9.
The Escherichia coli zupT (formerly ygiE) gene encodes a cytoplasmic membrane protein (ZupT) related to members of the eukaryotic ZIP family of divalent metal ion transporters. Previously, ZupT was shown to be responsible for uptake of zinc. In this study, we show that ZupT is a divalent metal cation transporter of broad substrate specificity. An E. coli strain with a disruption in all known iron uptake systems could grow in the presence of chelators only if zupT was expressed. Heterologous expression of Arabidopsis thaliana ZIP1 could also alleviate iron deficiency in this E. coli strain, as could expression of indigenous mntH or feoABC. Transport studies with intact cells showed that ZupT facilitates uptake of 55Fe2+ similarly to uptake of MntH or Feo. Other divalent cations were also taken up by ZupT, as shown using 57Co2+. Expression of zupT rendered E. coli cells hypersensitive to Co2+ and sensitive to Mn2+. ZupT did not appear to be metal regulated: expression of a Phi(zupT-lacZ) operon fusion indicated that zupT is expressed constitutively at a low level.  相似文献   

10.
Examination of the ilvF locus at 54 min on the Escherichia coli K-12 chromosome revealed that it is a cryptic gene for expression of a valine-resistant acetohydroxy acid synthase (acetolactate synthase; EC 4.1.3.18) distinct from previously reported isozymes. A spontaneous mutation, ilvF663, yielded IlvF+ enzyme activity that was multivalently repressed by all three branched-chain amino acids, was completely insensitive to feedback inhibition, was highly stable at elevated temperatures, and expressed optimal activity at 50 degrees C. The IlvF+ enzyme activity was expressed in strains in which isozyme II was inactive because of the ilvG frameshift in the wild-type strain K-12 and isozymes I and III were inactivated by point mutations or deletions. Tn5 insertional mutagenesis yielded two IlvF- mutants, with the insertion in ilvF663 in each case. These observations suggest that the ilvF663 locus may be a coding region for a unique acetohydroxy acid synthase activity.  相似文献   

11.
Superoxide dismutase and catalase levels in halophilic vibrios.   总被引:1,自引:0,他引:1       下载免费PDF全文
Superoxide dismutase (SOD) and catalase (CAT) levels were determined for several aerobically grown halophilic vibrios and compared with those found in aerobically grown Escherichia coli K-12. The SOD levels ranged from 25 to 103.6 U/mg of protein for the vibrios compared with 44.6 U/mg of protein for E. coli. The CAT levels ranged from 2.1 to 32.1 U/mg of protein. Electrophoretic analysis of cell extracts revealed that the halophilic vibrios tested possessed only one detectable SOD enzyme, except one strain which possessed two distinct enzymes, as compared with the three SOD enzymes in aerobically grown E. coli K-12. A comparison of anaerobically and aerobically grown vibrios revealed a three- to fourfold increase in SOD activity in the aerobic cells, suggesting that oxygen acts as an inducer for SOD in the vibrios as has been reported for E. coli. In one strain, Vibrio parahaemolyticus 27519, both SOD enzymes were observed in low levels in anaerobic and at higher levels in aerobically grown cells as compared with only one SOD enzyme in anaerobically grown E. coli. This suggests that differences in SOD regulation occur between the two genera. Our results indicate that halophilic vibrios possess SOD, which could enhance viruulence by allowing the organisms to survive in oxygenated environments.  相似文献   

12.
EDTA-induced outer membrane losses from whole cells of wild-type Escherichia coli (O111:B4) and several lipopolysaccharide (LPS) mutants derived from E. coli K-12 D21 were analyzed. EDTA treatment induced losses of LPS (up to 40%), outer membrane proteins OmpA, OmpF/C, and lipoprotein, periplasmic proteins, and phosphatidylethanolamine. The extent of these releases was strain specific. Successively more EDTA was necessary to induce these losses from strains containing LPS with increasing polysaccharide chain length. An additional heat shock immediately following the EDTA treatment had no effect on LPS release, but it decreased the release of outer membrane proteins and reduced the leakage of periplasmic proteins, suggesting that the temporary increase in outer membrane "permeability" caused by Ca2+-EDTA treatment was rapidly reversed by the redistribution of outer membrane components, a process which is favored by a mild heat shock. The fact that the material released from E. coli C600 showed a constant ratio of lipoprotein, OmpA, and phosphatidylethanolamine at all EDTA concentrations tested suggests that the material is lost as specific outer membrane patches. The envelope alterations caused by EDTA did not result in cell lysis.  相似文献   

13.
Escherichia coli outer membrane protein K is a porin.   总被引:6,自引:5,他引:1       下载免费PDF全文
Protein K is an outer membrane protein found in pathogenic encapsulated strains of Escherichia coli. We present evidence here that protein K is structurally and functionally related to the E. coli K-12 porin proteins (OmpF, OmpC, and PhoE). Protein K was found to cross-react with antibody to OmpF protein and to share 8 out of 17 peptides in common with the OmpF protein. Strains that are OmpC porin- and OmpF porin- and contain protein K as their major outer membrane protein have increased rates of uptake of nutrients and a faster growth rate relative to the parental porin- strain. The protein K-containing strains are at least 1,000-fold more sensitive to colicins E2 and E3 than is the porin -deficient strain. These data suggest that protein K is a functional porin in E. coli. The porin function of protein K was also demonstrated in vitro, using black lipid membranes. Protein K increased the conductance in these membranes in discrete, uniform steps characteristic of channels with a size of about 2 nS.  相似文献   

14.
Escherichia coli strain CL137, a K-12 derivative made E colicinogenic by contact with Fredericq's strain K317, was unaffected by colicin E2-P9, but K-12 carrying ColE2-P9 was sensitive to the E colicin made by strains CL137 and K317. This colicin we named E7-K317 because by the test of colicinogenic immunity it differed from colicins E1-K30, E2-P9, and E3-CA38 and from recently recognized colicins termed E4Horak, E5, and E6. Strain K317 as conjugational donor transmitted E7 colicinogeny; about half the E7-colicinogenic transconjugants were immune to colicin E2-P9. A spontaneous variant of CL137 retained E7 colicinogeny but was sensitive to E2 colicins. We attribute the E2 immunity of strain CL137 and some E7-coliconogeic transconjugants to a "colicin-immunity plasmid," ColE2imm-K317, from strain K317. Tra+ E7-colicinogenic transconjugants restricted phage BF23 in the same way as strains carrying ColIb-P9. We attribute Tra+ and restricting ability to a plasmid, pRES-K317, acquired from strain K317, and related to the ColI plasmids.  相似文献   

15.
L A Gukova  I D Avdienko 《Genetika》1978,14(7):1278-1280
The contransduction frequency of MAAs, UVs phenotype of Escherichia coli HfrC7 and its 7-51F- derivative with purE markers is found to be 1-2% which indicates that the mutation N 7 is located close to the F integration site in HfrC strain. E. coli strains K-12 7-51F+ and 7-51ColV2+ transfer chromosome markers in the same direction as does HfrC strain. The results suggest the presence of an integrated F fragment (sfa locus) into K-12 7-51F- chromosome.  相似文献   

16.
Iron uptake by Escherichia coli under aerobic conditions of iron deficiency is mediated by a highly stable ferric enterobactin [Fe(ent)3-] siderophore complex. M?ssbauer spectroscopy has been used to monitor the fate of the iron as 57Fe(ent) was taken up by the cells. Osmotic shock experiments were used to distinguish between the iron present in the periplasmic space and that in the cytoplasm of the cell. Iron delivery by a synthetic analog of enterobactin, 1,3,5-N,N',N'- tris-(2,3-dihydroxybenzoyl)triaminomethylbenzene (MECAM), was also studied. Although Fe-MECAM was transported at the same rate as was Fe(ent) across the outer membrane and was apparently accumulated in the periplasmic space, the subsequent behaviors of Fe(ent) and Fe-MECAM were very different. After more than 30 min, a major fraction of the iron originally absorbed as ferric enterobactin appeared as Fe(II), apparently in the cytoplasm of the cell. However, little iron was delivered to the cytoplasm by the MECAM complex. The differences in specificity of these two stages of iron uptake by E. coli are discussed.  相似文献   

17.
The EfeUOB system of Escherichia coli is a tripartite, low pH, ferrous iron transporter. It resembles the high-affinity iron transporter (Ftr1p-Fet3p) of yeast in that EfeU is homologous to Ftr1p, an integral-membrane iron-permease. However, EfeUOB lacks an equivalent of the Fet3p component—the multicopper oxidase with three cupredoxin-like domains. EfeO and EfeB are periplasmic but their precise roles are unclear. EfeO consists primarily of a C-terminal peptidase-M75 domain with a conserved ‘HxxE’ motif potentially involved in metal binding. The smaller N-terminal domain (EfeO-N) is predicted to be cupredoxin (Cup) like, suggesting a previously unrecognised similarity between EfeO and Fet3p. Our structural modelling of the E. coli EfeO Cup domain identifies two potential metal-binding sites. Site I is predicted to bind Cu2+ using three conserved residues (C41 and 103, and E66) and M101. Of these, only one (C103) is conserved in classical cupredoxins where it also acts as a Cu ligand. Site II most probably binds Fe3+ and consists of four well conserved surface Glu residues. Phylogenetic analysis indicates that the EfeO-Cup domains form a novel Cup family, designated the ‘EfeO-Cup’ family. Structural modelling of two other representative EfeO-Cup domains indicates that different subfamilies employ distinct ligand sets at their proposed metal-binding sites. The ~100 efeO homologues in the bacterial sequence databases are all associated with various iron-transport related genes indicating a common role for EfeO-Cup proteins in iron transport, supporting a new copper-iron connection in biology.  相似文献   

18.
Proton motive force is not obligatory for growth of Escherichia coli.   总被引:13,自引:6,他引:7       下载免费PDF全文
When 50 microM carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), a protonophore, was added to growth medium containing glucose at pH 7.5, Escherichia coli TK1001 (trkD1 kdpABC5) started exponential growth after 30 min; the generation time was 70 min at 37 degrees C. Strain AS1 (acrA), another strain derived from E. coli K-12, also grew in the presence of 50 microM CCCP under the same conditions, except that the lag period was ca. 3 h. When this strain was grown in the presence of 50 microM CCCP and then transferred to fresh medium containing 50 microM CCCP, cells grew without any lag. Neither a membrane potential nor a pH gradient was detected in strain AS1 cells growing in the presence of CCCP. When either succinate or lactate was substituted for glucose, these strains did not grow in the presence of 50 microM CCCP. Thus, it is suggested that E. coli can grow in the absence of a proton motive force when glucose is used as an energy source at pH 7.5.  相似文献   

19.
Among strains of Campylobacter jejuni, levels of ferrous iron (Fe2+) uptake was comparable. However, C. jejuni showed a lower level of ferrous iron uptake than Escherichia coli. Consistent with studies of E. coli, Fe2+ uptake in C. jejuni was significantly enhanced by low Mg2+ concentration. The C. jejuni genome sequence contains a single known ferrous iron uptake gene, feoB, whose product shares 50% amino acid identity to Helicobacter pylori FeoB and 29% identity to E. coli FeoB. However, Fe2+ uptake could not be attributed to FeoB for several reasons. Site-directed mutations in feoB caused no defect in 55Fe2+ uptake. Among C. jejuni strains, various nucleotide alterations were found in feoB, indicating that some C. jejuni feoB genes are defective. In addition, uptake could not be attributed to the magnesium transporter CorA, since no reduction in 55Fe2+ uptake was observed in the presence of a CorA-specific inhibitor.  相似文献   

20.
Six ilvG (IlvG+) mutations of Escherichia coli K-12 were transferred to recombinant plasmids, and the DNA sequence of each mutation was determined. This analysis confirmed that expression of the ilvG gene product (acetohydroxy acid synthase II) requires the deletion of a single base pair or the addition of two base pairs within ilvG to displace a frameshift site present in wild-type E. coli K-12. This system should be useful in the analysis of potential frameshift mutagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号