首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Until recently very little was known about the genome of Plasmodium falciparum. The situation has changed considerably with the advent of pulsed field gradient electrophoresis and yeast artificial chromosome technologies. It should now be possible to generate a high-resolution map within a few years. Here, Tony Triglia, Thomas Wellems and David Kemp review current knowledge.  相似文献   

5.
The epigenetic control of antigenic variation in Plasmodium falciparum   总被引:7,自引:0,他引:7  
Much of what is known about antigenic variation in the human malaria parasite Plasmodium falciparum has been established by the study of phenotypic changes at the surface of parasitized red blood cells. Although this has contributed to our fundamental understanding of immune escape, nothing conclusive has been elucidated about the molecular mechanisms that determine activation and silencing of members of the antigenic variation var gene family. Recent findings indicate that reversible chromatin modifications and perinuclear gene movement are epigenetic factors that define the silent and active states of telomere-adjacent var genes.  相似文献   

6.
Whole-genome methods are changing the scope of biological questions that can be addressed in malaria research. In the rich context provided by Plasmodium falciparum genome sequencing, genetic mapping is a powerful tool for identifying genes involved in parasite development, invasion, transmission and drug resistance. The recent development of a high-resolution P. falciparum linkage map consisting of hundreds of microsatellite markers will facilitate an integrated genomic approach to understanding the relationship between genetic variations and biological phenotypes. Here, Michael Ferdig and Xin-zhuan Su provide an overview for applying microsatellite markers and genetic maps to gene mapping, parasite typing and studies of parasite population changes.  相似文献   

7.
8.

Background

Angola's malaria case-management policy recommends treatment with artemether-lumefantrine (AL). In 2006, AL implementation began in Huambo Province, which involved training health workers (HWs), supervision, delivering AL to health facilities, and improving malaria testing with microscopy and rapid diagnostic tests (RDTs). Implementation was complicated by a policy that was sometimes ambiguous.

Methods

Fourteen months after implementation began, a cross-sectional survey was conducted in 33 outpatient facilities in Huambo Province to assess their readiness to manage malaria and the quality of malaria case-management for patients of all ages. Consultations were observed, patients were interviewed and re-examined, and HWs were interviewed.

Results

Ninety-three HWs and 177 consultations were evaluated, although many sampled consultations were missed. All facilities had AL in-stock and at least one HW trained to use AL and RDTs. However, anti-malarial stock-outs in the previous three months were common, clinical supervision was infrequent, and HWs had important knowledge gaps. Except for fever history, clinical assessments were often incomplete. Although testing was recommended for all patients with suspected malaria, only 30.7% of such patients were tested. Correct testing was significantly associated with caseloads < 25 patients/day (odds ratio: 18.4; p < 0.0001) and elevated patient temperature (odds ratio: 2.5 per 1°C increase; p = 0.007). Testing was more common among AL-trained HWs, but the association was borderline significant (p = 0.072). When the malaria test was negative, HWs often diagnosed patients with malaria (57.8%) and prescribed anti-malarials (60.0%). Sixty-six percent of malaria-related diagnoses were correct, 20.1% were minor errors, and 13.9% were major (potentially life-threatening) errors. Only 49.0% of malaria treatments were correct, 5.4% were minor errors, and 45.6% were major errors. HWs almost always dosed AL correctly and gave accurate dosing instructions to patients; however, other aspects of counseling needed improvement.

Conclusion

By late-2007, substantial progress had been made to implement the malaria case-management policy in a setting with weak infrastructure. However, policy ambiguities, under-use of malaria testing, and distrust of negative test results led to many incorrect malaria diagnoses and treatments. In 2009, Angola published a policy that clarified many issues. As problems identified in this survey are not unique to Angola, better strategies for improving HW performance are urgently needed.  相似文献   

9.
BackgroundIn areas with both Plasmodium vivax and Plasmodium falciparum malaria, interventions can reduce the burden of both species but the impact may vary due to their different biology. Knowing the expected relative impact on the two species over time for vector- and drug-based interventions, and the factors affecting this, could help plan and evaluate intervention strategies.MethodsFor three interventions (treated bed nets (ITN), mass drug administration (MDA) and indoor residual spraying (IRS)), we identified studies providing information on the proportion of clinical illness and patent infections attributed to P. vivax over time using a literature search. The change in the proportion of malaria attributed to P. vivax up to two years since implementation was estimated using logistic regression accounting for clustering with random effects. Potential factors (intervention type, coverage, relapse pattern, transmission intensity, seasonality, initial proportion of P. vivax and round of intervention) were assessed.ResultsIn total there were 55 studies found that led to 72 series of time-points for clinical case data and 69 series for patent infection data. The main reason of study exclusion was insufficient information on interventions. There was considerable variation in the proportion of malaria attributed to P. vivax over time by study and location for all of the interventions. Overall, there was an increase apart from MDA in the short-term. The potential factors could not be ruled in or out. Although not consistently significant, coverage, transmission intensity and relapse pattern are possible factors that explain some of the variation found.ConclusionWhile there are reports of an increase in the proportion of malaria due to P. vivax following interventions in the long-term, there was substantial variation for the shorter time-scales considered in this study (up to 24 months for IRS and ITN, and up to six months for MDA). The large variability points to the need for the monitoring of both species after an intervention. Studies should report intervention timing and characteristics to allow inclusion in systematic reviews.  相似文献   

10.
We have measured microsatellite diversity at 26 markers around the dhfr gene in pyrimethamine-sensitive and -resistant parasites collected in southeast Africa. Through direct comparison with diversity on sensitive chromosomes we have found significant loss of diversity across a region of 70 kb around the most highly resistant allele which is evidence of a selective sweep attributable to selection through widespread use of pyrimethamine (in combination with sulfadoxine) as treatment for malaria. Retrospective analysis through four years of direct and continuous selection from use of sulfadoxine-pyrimethamine as first-line malaria treatment on a Plasmodium falciparum population in KwaZulu Natal, South Africa, has revealed how recombination significantly narrowed the margins of the selective sweep over time. A deterministic model incorporating selection coefficients measured during the same interval indicates that the transition was toward a state of recombination-selection equilibrium. We compared loss of diversity around the same resistance allele in two populations at either extreme of the range of entomological inoculation rates (EIRs), namely, under one infective bite per year in Mpumalanga, South Africa, and more than one per day in southern Tanzania. EIRs determine effective recombination rates and are expected to profoundly influence the dimensions of the selective sweep. Surprisingly, the dimensions were broadly consistent across both populations. We conclude that despite different recombination rates and contrasting drug selection histories in neighboring countries, the region-wide movement of resistant parasites has played a key role in the establishment of resistance in these populations and the dimensions of the selective sweep are dominated by the influence of high initial starting frequencies.  相似文献   

11.
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)‐reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South‐East Asia‐derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt‐based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labelling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabelling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny; however, inheritance patterns indicate that an allele‐specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR.  相似文献   

12.
We derive a map of protein interactions in the parasite Plasmodium falciparum from conserved interactions in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Escherichia coli and pool them with experimental interaction data. The application of a clique‐percolation algorithm allows us to find overlapping clusters, strongly correlated with yeast specific conserved protein complexes. Such clusters contain core activities that govern gene expression, largely dominated by components of protein production and degradation processes as well as RNA metabolism. A critical role of protein hubs in the interactome of P. falciparum is supported by their appearance in multiple clusters and the tendencies of their interactions to reach into many distinct protein clusters. Parasite proteins with a human ortholog tend to appear in single complexes. Annotating each protein with the stage where it is maximally expressed we observe a high level of cluster integrity in the ring stage. While we find no signal in the trophozoite phase, expression patterns are reversed in the schizont phase, implying a preponderance of parasite specific functions in this late, invasive schizont stage. As such, the inference of potential protein interactions and their analysis contributes to our understanding of the parasite, indicating basic pathways and processes as unique targets for therapeutic intervention.  相似文献   

13.

Background

Plasmodium chabaudi chabaudi can be considered as a rodent model of human malaria parasites in the genetic analysis of important characters such as drug resistance and immunity. Despite the availability of some genome sequence data, an extensive genetic linkage map is needed for mapping the genes involved in certain traits.

Methods

The inheritance of 672 Amplified Fragment Length Polymorphism (AFLP) markers from two parental clones (AS and AJ) of P. c. chabaudi was determined in 28 independent recombinant progeny clones. These, AFLP markers and 42 previously mapped Restriction Fragment Length Polymorphism (RFLP) markers (used as chromosomal anchors) were organized into linkage groups using Map Manager software.

Results

614 AFLP markers formed linkage groups assigned to 10 of 14 chromosomes, and 12 other linkage groups not assigned to known chromosomes. The genetic length of the genome was estimated to be about 1676 centiMorgans (cM). The mean map unit size was estimated to be 13.7 kb/cM. This was slightly less then previous estimates for the human malaria parasite, Plasmodium falciparum

Conclusion

The P. c. chabaudi genetic linkage map presented here is the most extensive and highly resolved so far available for this species. It can be used in conjunction with the genome databases of P. c chabaudi, P. falciparum and Plasmodium yoelii to identify genes underlying important phenotypes such as drug resistance and strain-specific immunity.  相似文献   

14.
Ayala FJ  Rich SM 《Gene》2000,261(1):161-170
Plasmodium falciparum, the agent of human malignant malaria, diverged from Plasmodium reichenowi, the chimpanzee parasite, about the time the human and chimpanzee lineages diverged from each other. The absence of synonymous nucleotide variation at ten loci indicates that the world populations of P. falciparum derive most recently from one single strain, or 'cenancestor,' which lived a few thousand years ago. Antigenic genes of P. falciparum (such as Csp, Msp-1, and Msp-2) exhibit numerous polymorphisms that have been estimated to be millions of years old. We have discovered in these antigenic genes short repetitive sequences that distort the alignment of alleles and account for the apparent old age of the polymorphisms. The processes of intragenic recombination that generate the repeats occur at rates about 10(-3) to 10(-2), several orders of magnitude greater than the typical mutational process of nucleotide substitutions. We conclude that the antigenic polymorphisms of P. falciparum are consistent with a recent expansion of the world populations of the parasite from a cenancestor that lived in tropical Africa a few thousand years ago.  相似文献   

15.

Background

The human malaria parasite Plasmodium falciparum survives pressures from the host immune system and antimalarial drugs by modifying its genome. Genetic recombination and nucleotide substitution are the two major mechanisms that the parasite employs to generate genome diversity. A better understanding of these mechanisms may provide important information for studying parasite evolution, immune evasion and drug resistance.

Results

Here, we used a high-density tiling array to estimate the genetic recombination rate among 32 progeny of a P. falciparum genetic cross (7G8 × GB4). We detected 638 recombination events and constructed a high-resolution genetic map. Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb per centimorgan and identified 54 candidate recombination hotspots. Similar to centromeres in other organisms, the sequences of P. falciparum centromeres are found in chromosome regions largely devoid of recombination activity. Motifs enriched in hotspots were also identified, including a 12-bp G/C-rich motif with 3-bp periodicity that may interact with a protein containing 11 predicted zinc finger arrays.

Conclusions

These results show that the P. falciparum genome has a high recombination rate, although it also follows the overall rule of meiosis in eukaryotes with an average of approximately one crossover per chromosome per meiosis. GC-rich repetitive motifs identified in the hotspot sequences may play a role in the high recombination rate observed. The lack of recombination activity in centromeric regions is consistent with the observations of reduced recombination near the centromeres of other organisms.  相似文献   

16.
Population genetic structure and subdivision are key factors affecting the evolution of organisms. In this study, we analysed and compared the population genetic structure of the malaria parasite Plasmodium falciparum and its mosquito vector Anopheles gambiae over space and time in the Nianza Province, near Victoria Lake in Kenya. The parasites were collected from mosquitoes caught in six villages separated by up to 68 km in 2002 and 2003. A total of 545 oocysts were dissected from 122 infected mosquitoes and genotyped at seven microsatellite markers. Five hundred and forty-seven mosquitoes, both infected and uninfected, were genotyped at eight microsatellites. For the parasite and the vector, the analysis revealed no (or very little) genetic differentiation among villages. This may be explained by high local population sizes for the parasite and the mosquito. The small level of genetic differentiation observed between populations may explain the speed at which antimalarial drug resistance and insecticide resistance spread into the African continent.  相似文献   

17.
18.
19.
20.
Malarial parasites have two highly conserved cytoplasmic DNA molecules: a 6-kb tandemly arrayed DNA that has characteristics of a mitochondrial genome, and a 35-kb circular DNA that encodes functions commonly found in chloroplasts. We examined the inheritance pattern of these elements in two genetic crosses of Plasmodium falciparum clones. Parent-specific oligonucleotide probes and single-strand conformation polymorphism analysis identified single nucleotide changes that distinguished the parental 6- and 35-kb DNA molecules in the progeny. In all 16 independent recombinant progeny of a cross between a Central American clone, HB3, and a Southeast Asian clone, Dd2, the 6- and 35-kb DNAs were inherited from the Dd2 parent. In all nine independent recombinant progeny of a cross between clone HB3 and a likely African clone, 3D7, the 6-kb DNA was inherited from the 3D7 parent. Inheritance of cytoplasmic genomes of the Dd2 and 3D7 parents was, therefore, dominant over that of the HB3 parent. Cytoplasmic DNA molecules were found almost exclusively in the female gametes of malarial parasites; hence, clone HB3 did not appear to have served as a maternal parent for the progeny of two crosses. Defective differentiation into male gametes by clone Dd2 is likely to be a reason for the cytoplasmic inheritance pattern seen in the HB3 x Dd2 cross. However, incompetence of male or female gametes is unlikely to explain the uniparental dominance in recombinant progeny of the HB3 x 3D7 cross, since both parents readily self-fertilized and completed the malaria life cycle on their own. Instead, the data suggest unidirectional parental incompatibility in cross-fertilization of these malarial parasites, where a usually cosexual parental clone can participate only as a male or as a female. Such an incompatibility may be speculated as indicating an early phase of reproductive isolation of P. falciparum clones from different geographical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号