首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.  相似文献   

2.
The DNA-dependent RNA polymerases of Schneider 2-L cells of Drosophila melanogaster are described. These cells contain five readily detectable forms of this enzyme, polymerases Ia, Ib, IIIa, II, and IIIb, which elute from DEAE-Sephadex at 0.08, 0.12, 0.15, 0.20, and 0.22 m ammonium sulfate, respectively. RNA polymerases IIIa and IIIb, which each constitute about 5–10% of the total RNA polymerase activity in Drosophila embryos, are found to constitute 30 and 10%, respectively, of the total polymerase activity in cultured cells. The two form III polymerases are further characterized by in vitro response to divalent cations and ionic strength, template utilization, and sensitivity to -amanitin. Verification of the class III designation of these two polymerases is provided by their sensitivity to only very high levels of -amanitin (50% inhibition at approximately 800 µg/ml), their 10-fold greater activity on poly[d(A–T)], and their elution from DEAE-cellulose at lower ionic strengths than from DEAE-Sephadex.This work was supported by the Natural Sciences and Engineering Research Council.  相似文献   

3.
The genomic distribution and the number of elements of eleven transposon families have been compared by the Southern technique between permanent cultured cells, larval salivary glands and the brains and whole flies of an inbred Drosophila line (inb-c) from which the cells were established. In cultured cells, changes in restriction patterns consistent with various types of rearrangements such as amplification, transposition and excision of the elements of copia, 1731, 412, 297 and mdg-4 transposon families are detected whereas B 104, G and blood elements appear stable. In previous reports these rearrangements were not detected among individuals of the inb-c line or among samples of somatic tissues, or in samples spanning years of maintenance of cultured cells. Hence, we believe that they have been induced de novo during the passage to the cell culture.  相似文献   

4.
Summary During stages 11 and 12, follicle cells surrounding the nurse cells produce lysosomes which presumably aid in the breakdown of the nurse cells. Accompanying a DNA reduction in nurse cell nuclei are several characteristic morphological changes including the appearance of intranuclear rod-like structures and nuclear granules about 300 Å in diameter. Similarities between structures seen in Drosophila nurse cell nuclei and those seen in other organisms are discussed.This research was supported by U. S. Public Health Service Grants 5TIGM903-3 and 1-F1-GM-33, 385-01 and National Science Foundation grant GB-7457.  相似文献   

5.
6.
Summary In this paper experiments concerning some aspects of the development of pole cells and midgut progenitors in Drosophila are reported. Cells were labelled by injecting horseradish-peroxidase (HRP) in embryos before pole bud formation and transplanted at different stages into unlabelled embryos, where the transplanted cells developed together with the unlabelled cells of the host. The hosts were then fixed and stained at different ages in order to demonstrate the presence of HRP in the progenies of transplanted cells. The main conlusions of the study are as follows. The gonads are the only organ to the formation of which pole cells normally contribute; those pole cells which do not participate in the formation of the gonads are finally eliminated or degenerate. Since the number of primordial germ cells in the gonads is the same irrespective of the number of pole cells present in the embryo, an (unknown) mechanism must exist regulating the final number of pole cells in each of the gonads. After their formation and before reaching the gonads, pole cells have been found to divide only up to two times. With respect to the midgut progenitors, the cells of both anlagen have been found to be committed to develop into midgut, although they behave as equivalent in that they do not apparently distinguish between the anterior and posterior anlage. Midgut progenitors have been found to divide a maximum of three times and to produce two different types of cells, epithelial cells of the midgut wall and spindle-like cells located internally in the gut.  相似文献   

7.
Summary By using an in vitro functional assay, we have shown that Drosophila embryonic cells possess Ca2+-dependent adhesive sites, which resemble in many respects those described for vertebrate cells and tissues. The cells, obtained by mechanical disruption of gastrulastage embryos, form aggregates within 30 min when maintained under constant rolling. The aggregation is completely dependent on the presence of Ca2+ in the medium. In its absence, the cells remain dispersed but the process is reversible by readdition of Ca2+. In addition the aggregation is temperature-dependent. No aggregation occurs at 4° C but it can be restored by raising the temperature to 25° C. These properties are characteristic of these cells: established cell lines do not aggregate under the same conditions and mixing of cell lines and embryonic cells does not result in chimeric aggregates, thus pointing towards cell-type selectivity with respect to aggregability. Observations in electron microscopy have shown that the embryonic cells in the aggregates tightly adhere to one another and form, as early as after 30 min, maculae adherens junctions. Drosophila embryonic cells have adhesion sites that are protected from trypsin proteolysis in the presence of Ca2+ and sensitive in its absence. The cells' aggregation can be inhibited by a mouse antiserum directed against cell-surface components and a good correlation exists between neutralization of the inhibitory activity of the antiserum and the presence of trypsin-sensitive sites on the cells. These data are in favour of cell-cell adhesion mediated by specific adhesion proteins.  相似文献   

8.
Summary We have devised techniques to culture whole, dissected embryos of Drosophila melanogaster. We examine multiple aspects of the morphological and physiological development of the epidermis, musculature, nervous system, and internal organs in this cultured preparation, and show that in vitro development closely parallels normal embryogenesis. These techniques permit a wide range of experimental manipulations during embryogenesis and allow us to extend observations through late embryonic stages, after cuticle deposition. Applications of this technique are presented.  相似文献   

9.
Actin polymerization processes in plant cells   总被引:5,自引:0,他引:5  
Growing evidence shows that the actin cytoskeleton is a key effector of signal transduction, which controls and maintains the shape of plant cells, as well as playing roles in plant morphogenesis. Recently, several signaling pathways, including those triggered by hormones, Ca(2+), and cAMP, have been reported to be connected to the reorganization of the actin cytoskeleton. The molecular mechanisms involved in such signaling cascades are, however, largely unknown. The Arabidopsis genome sequence is a valuable tool for identifying some of the highly conserved molecules that are involved in such signaling cascades. Recent work has begun to unravel these complex pathways using a panoply of techniques, including genetic analysis, live-cell imaging of intracellular actin dynamics, in vivo localization of factors that are involved in the control of actin dynamics, and the biochemical characterization of how these factors function.  相似文献   

10.
Summary Some aspects of neural and epidermal cell lineages during embryogenesis of Drosophila melanogaster were studied by transplanting horseradish-peroxidase-(HRP-) labelled ectodermal cells from young gastrula donors into host embryos of similar ages. Heterotopic transplantations permitted us to assess the degree of commitment already attained by the transplanted cells. The resulting cell clones showed normal characteristics of cytodifferentiation and cell number. The results indicate that epidermal progenitors perform a maximum of three mitoses during embryonic development, whereas neuroblasts may perform more than ten mitoses. Clone size distribution is in both cases scattered, suggesting either a rather irregular mitotic pattern or cell death. As indicated by heterotopic transplantations, the neurogenic ectoderm for the ventral nervous system exhibits different neurogenic abilities in its different regions, decreasing from medial to lateral; we discuss the hypothesis that some medially located cells of the young gastrulating embryo could be committed towards the neural fate before segregating from the ectoderm. On the other hand, the cells of the dorsal ectodermal regions at the same stage seem to be indifferent with respect to commitment, for they are able to give rise to central neural lineages following their transplantation in the neurogenic region.  相似文献   

11.
The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure.  相似文献   

12.
In response to the addition of 20-hydroxyecdysone, Drosophila line Kc cells extend filopodia, become motile and aggregate. An investigation was carried out to determine whether the appearance of motility was correlated with an increase in intracellular actin content or actin synthesis, or a decrease in actin degradation. With the exception of actin content, measured by DNAse I inactivation, treated and untreated cells were indistinguishable for all parameters. DNAse I inactivation studies indicated a three- to four-fold increase in actin content during the two days following hormone exposure. These data are interpreted by a model in which an inactive pool of actin becomes available for microfilament assembly.  相似文献   

13.
Summary We describe the results of cell transplantation experiments performed to investigate mesodermal lineages in Drosophila melanogaster, particularly the lineages of the somatic muscles, the visceral muscles and the fat body. Cells to be transplanted were labelled by injecting a mixture of horseradish peroxidase (HRP) and fluorescein-dextran (FITC) in wild-type embryos at the syncytial blastoderm stage. For transplantation cells were removed from the ventral furrow, 8–12 min after the start of gastrulation, and individually transplanted into homotopic or heterotopic locations of unlabelled wild-type hosts of the same age. HRP labelling in the resulting cell clones was demonstrated histochemically in the fully developed embryo; histotypes could be distinguished without ambiguity. Mesodermal cells were already found to be committed to mesodermal fates at the time of transplantation. They developed only into mesodermal derivatives and did not integrate in non-mesodermal organs upon heterotopical transplantation. No evidence was found for commitment to any particular mesodermal organ at the time of transplantation. The majority of somatic muscle clones contributed cells to only one segment. However, clones were not infrequently distributed through two or even three segments. Clones of fat body cells were generally restricted to a small region. However, cells of clones of visceral musculature were widely distributed. With respect to the proliferative abilities of transplanted cells the clones were difficult to interpret due to the syncytial character of the somatic musculature and the fact that the organization of the other organs is poorly understood. Evidence from histological observations of developing normal embryos indicates only three mitoses for mesodermal cells. Clones larger than seven cells were not found when embryos were fixed previous to germ-band shortening; larger clones were found in the fat body and visceral musculature after fixing the embryos at the end of organogenesis. Quantitative considerations suggest that a few mesodermal cells might perform more than three mitoses.  相似文献   

14.
Summary WhenDrosophila cell lines are exposed to physiological doses of the steroid molting hormone, ecdysterone, they enter mitotic arrest and differentiate morphologically. These responses are accompanied by specific changes in gene expression. Several enzyme activities (acetylcholinesterase, β-galactosidase, dopa decarboxylase, and catalase) are induced and the synthesis of a cytoplasmic actin and the four small heat-shock proteins is initiated. Several of these ecdysterone inducible genes have been physically isolated and characterized, in several cases by DNA sequencing. Current studies focus on introducing cloned ecdysterone inducible genes into responsive cells by DNA mediated transfection. Once it is clear that these introduced genes acquire the normal pattern of hormone-regulated gene expression in the cell, in vitro mutagenesis can be used before transfection to modify their structure. Transient expression, then, can become a functional assay to define regions of DNA flanking the coding region of inducible genes that are needed for proper gene expression and regulation in cultured cells. This work has been supported by grants from the NIH (GM 22866, GM 33235, CA 23108) and the American Cancer Society (1N157).  相似文献   

15.
Summary Hemocytes of Drosophila melanogaster and Drosophila yakuba larvae have been defined in terms of their ultrastructure and functions in coagulation, wound healing, encapsulation, phenol-oxydase activity, and phagocytosis. The position of these cells among the classical hemocyte types of insects is determined. We distinguish two plasmatocyte types (macrophage plasmatocytes and lamellocytes) which do not seem to belong to the same lineage, and oenocytoids which are the crystal cells of the literature.I should like to thank Dr. N. Plus for her help in this study  相似文献   

16.
We show that different Drosophila actinisoforms are not interchangeable. We sequenced the sixgenes that encode conventional Drosophilaactins and found that they specify amino acidreplacements in 27 of 376 positions. To test the significance ofthese changes we used directed mutagenesis to introduce10 such conversions, independently, into the Act88Fflight muscle-specific actin gene. We challenged these variant actins to replace the nativeprotein by transforming germline chromosomes of aDrosophila strain lacking flight muscle actin.Only one of the 10 reproducibly perturbed myofibrillarfunction, demonstrating that most isoform-specific aminoacid replacements are of minor significance. In order toestablish the consequences of multiple amino acidreplacements, we substituted portions of theDrosophila Act88F actin gene with correspondingregions of genes encoding other isoforms. Only one offive constructs tested engendered normally functioningflight muscles, and the severity of myofibrillar defects correlated with the number of replacementswithin the chimeric genes. Finally, we completelyconverted the flight muscle actin-encoding gene to onespecifying a nonmuscle isoform, a change entailing atotal of 18 amino acid replacements. Transformationof flies with this construct resulted in disruption offlight muscle structure and function. We conclude thatactin isoform sequences are not equivalent and that effects of the amino acid replacements,while minor individually, collectively confer uniqueproperties.  相似文献   

17.
Notch signalling in Drosophila: three ways to use a pathway   总被引:4,自引:0,他引:4  
Cell-cell interactions mediated by Notch are critical at multiple stages of development. Our current understanding of the Notch signalling pathway suggests a comparatively simple transduction mechanism. However, this core pathway can be deployed in three different types of developmental process: lateral inhibition, lineage decisions and boundary formation. These illustrate how the activity of the pathway can be modulated both at the cell surface, through availability and effectiveness of ligand interactions, and inside the cell, through effects on the transduction pathway and the responsiveness of target genes.  相似文献   

18.
Lloyd V 《Genetica》2000,109(1-2):35-44
Genetic imprinting is a form of epigenetic silencing. But with a twist. The twist is that while imprinting results in the silencing of genes, chromosome regions or entire chromosome sets, this silencing occurs only after transmission of the imprinted region by one sex of parent. Thus genetic imprinting reflects intertwined levels of epigenetic and developmental modulation of gene expression. Imprinting has been well documented and studied in Drosophila, however, these studies have remained largely unknown due to nothing more significant than differences in terminology. Imprinting in Drosophilais invariably associated with heterochromatin or regions with unusual chromatin structure. The imprint appears to spread from imprinted centers that reside within heterochromatin and these are, seemingly, the only regions that are normally imprinted in Drosophila. This is significant as it implies that while imprinting occurs in Drosophila, it is generally without phenotypic consequence. Hence the evolution of imprinting, at least in Drosophila, is unlikely to be driven by the function of specific imprinted genes. Thus, the study of imprinting in Drosophilahas the potential to illuminate the mechanism and biological function of imprinting, and challenge models based solely on imprinting of mammalian genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Heterochromatin behaviour and structural alterations in chromosomes of cells derived from callus culture ofAllium fistulosum have been studied.The diploid chromosome complement ofAllium fistulosum consists of 16 chromosomes with significant amount of heterochromatin mainly of telomeric nature. In eight collections of callus cells analysed, a high rate of numerical and structural chromosome abnormalities was observed. After 12 months in culture about 20% of metaphase chromosomes possessed distinct signs of mutational events.C-banded preparations revealed that many structural alterations involved regions of heterochromatin. Interchromosomal connections and chromatid fusions occurred at telomeric heterochromatin segments. Also formation of the end-to-end associations and polycentric chromosomes often took place without visible loss of telomeric heterochromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号