首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant measles virus nucleoprotein-RNA (N-RNA) helices were analyzed by negative-stain electron microscopy. Three-dimensional reconstructions of trypsin-digested and intact nucleocapsids coupled to the docking of the atomic structure of the respiratory syncytial virus (RSV) N-RNA subunit into the electron microscopy density map support a model that places the RNA at the exterior of the helix and the disordered C-terminal domain toward the helix interior, and they suggest the position of the six nucleotides with respect to the measles N protomer.  相似文献   

2.
Rabies virus nucleoprotein (N) was produced in insect cells, in which it forms nucleoprotein-RNA (N-RNA) complexes that are biochemically and biophysically indistinguishable from rabies virus N-RNA. We selected recombinant N-RNA complexes that were bound to short insect cellular RNAs which formed small rings containing 9 to 11 N monomers. We also produced recombinant N-RNA rings and viral N-RNA that were treated with trypsin and that had lost the C-terminal quarter of the nucleoprotein. Trypsin-treated N-RNA no longer bound to recombinant rabies virus phosphoprotein (the viral polymerase cofactor), so the presence of the C-terminal part of N is needed for binding of the phosphoprotein. Both intact and trypsin-treated recombinant N-RNA rings were analyzed with cryoelectron microscopy, and three-dimensional models were calculated from single-particle image analysis combined with back projection. Nucleoprotein has a bilobed shape, and each monomer has two sites of interaction with each neighbor. Trypsin treatment cuts off part of one of the lobes without shortening the protein or changing other structural parameters. Using negative-stain electron microscopy, we visualized phosphoprotein bound to the tips of the N-RNA rings, most likely at the site that can be removed by trypsin. Based on the shape of N determined here and on structural parameters derived from electron microscopy on free rabies virus N-RNA and from nucleocapsid in virus, we propose a low-resolution model for rabies virus N-RNA in the virus.  相似文献   

3.
Recombinant measles virus nucleoprotein (N) was produced in insect cells where it bound to cellular RNA to form helical N-RNA structures. These structures were observed by electron microscopy but were too flexible for high-resolution image analysis. Removal of the C-terminal tail of N by trypsin treatment resulted in structures that were much more rigid and seemed more regular. Several methods of image analysis were employed in order to make a helical reconstruction of the digested N-RNA. During this analysis, it became clear that the apparently regular coils of digested N-RNA consisted of a series of closely related helical states. The iterative helical real space reconstruction method allowed the identification of two helical states for which a reconstruction could be calculated. The model with the highest resolution shows N monomers that consist of three domains and that are connected to their neighbours by two narrow connections, one close to the helical axis and another toward the middle of the monomers. There are no connections between N molecules in subsequent helical turns. After labelling the RNA in the structure with cis-platinum, the connection closest to the helical axis increased in density, suggesting the position of the RNA. The shapes of the monomers of the nucleoproteins of influenza virus, rabies virus (both determined before) and that of measles virus (determined here) are all similar, whereas the overall shapes of their respective N-RNAs (nucleocapsids) is very different. This is probably due to the position and number of the connections between the N subunits in the N-RNA, one for influenza virus allowing much flexibility, two for rabies virus at either end of the N molecules leading to ribbons and two for measles virus leading to the typical paramyxovirus helical nucleocapsid.  相似文献   

4.
5.
6.
7.
8.
During assembly and morphogenesis of Rous sarcoma virus (RSV), proteolytic processing of the structural precursor (Pr76Gag) protein generates three capsid (CA) protein variants, CA476, CA479, and CA488. The proteins share identical N-terminal domains (NTDs), but are truncated at residues corresponding to gag codons 476, 479, and 488 in their CA C-terminal domains (CTDs). To characterize oligomeric forms of the RSV CA variants, we examined 2D crystals of the capsid proteins, assembled on lipid monolayers. Using electron microscopy and image analysis approaches, the CA proteins were observed to organize in hexagonal (p6) arrangements, where rings of membrane-proximal NTD hexamers were spaced at 95 A intervals. Differences between the oligomeric structures of the CA variants were most evident in membrane-distal regions, where apparent CTDs interconnect hexamer rings. In this region, CA488 connections were observed readily, while CA476 and CA479 contacts were resolved poorly, suggesting that in vivo processing of CA488 to the shorter forms may permit virions to adopt a dissembly-competent conformation. In addition to crystalline arrays, the CA479 and CA488 proteins formed small spherical particles with diameters of 165-175 A. The spheres appear to be arranged from hexamer or hexamer plus pentamer ring subunits that are related to the 2D crystal forms. Our results implicate RSV CA hexamer rings as basic elements in the assembly of RSV virus cores.  相似文献   

9.
The prototype member of the complementation group II temperature-sensitive (ts) mutants of vesicular stomatitis virus, ts II 052, has been investigated. In ts II 052-infected HeLa cells at the restrictive temperature (39.5 degrees C), reduced viral RNA synthesis was observed by comparison with infections conducted at the permissive temperature (30 degrees C). It was found that for an infection conducted at 39.5 degrees C, no 38S RNA or intracytoplasmic nucleocapsids were present. For nucleocapsids isolated from ts II 052 purified virions or from ts II 052-infected cells at 30 degrees C, the RNA was sensitive to pancreatic RNase after an exposure at 39.5 degrees C in contrast to the resistance observed for wild-type virus. The nucleocapsid stability of wild-type virus when heated to 63 degrees C or submitted to varying pH was not found in nucleocapsids extracted from ts II 052 purified virions. The data suggest that for ts II 052 there is an altered relationship between the viral 38S RNA and the nucleocapsid protein(s) by comparison with wild-type virus. Such results argue for the complementation group II gene product being N protein, so that the ts defect in ts II 052 represents an altered N protein.  相似文献   

10.
11.
Structure and self-association of the Rous sarcoma virus capsid protein   总被引:13,自引:0,他引:13  
BACKGROUND: The capsid protein (CA) of retroviruses, such as Rous sarcoma virus (RSV), consists of two independently folded domains. CA functions as part of a polyprotein during particle assembly and budding and, in addition, forms a shell encapsidating the genomic RNA in the mature, infectious virus. RESULTS: The structures of the N- and C-terminal domains of RSV CA have been determined by X-ray crystallography and solution nuclear magnetic resonance (NMR) spectroscopy, respectively. The N-terminal domain comprises seven alpha helices and a short beta hairpin at the N terminus. The N-terminal domain associates through a small, tightly packed, twofold symmetric interface within the crystal, different from those previously described for other retroviral CAs. The C-terminal domain is a compact bundle of four alpha helices, although the last few residues are disordered. In dilute solution, RSV CA is predominantly monomeric. We show, however, using electron microscopy, that intact RSV CA can assemble in vitro to form both tubular structures constructed from toroidal oligomers and planar monolayers. Both modes of assembly occur under similar solution conditions, and both sheets and tubes exhibit long-range order. CONCLUSIONS: The tertiary structure of CA is conserved across the major retroviral genera, yet sequence variations are sufficient to cause change in associative behavior. CA forms the exterior shell of the viral core in all mature retroviruses. However, the core morphology differs between viruses. Consistent with this observation, we find that the capsid proteins of RSV and human immunodeficiency virus type 1 exhibit different associative behavior in dilute solution and assemble in vitro into different structures.  相似文献   

12.
13.
14.
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.  相似文献   

15.
In order to study the packaging of rabies virus RNA inside the viral nucleocapsid, rabies nucleoprotein was expressed in insect cells. In the cells, it binds to cellular RNA to form long, helical or short circular complexes, depending on the length of the bound RNA. The circular complexes contained from 9 up to 13 N-protomers per ring. Separation of the rings into defined size classes was impossible through regular column chromatographies or gradient centrifugation. The size classes could be separated by native polyacrylamide gel electrophoresis. A large-scale separation was achieved with a 4% native gel using a preparative electrophoresis apparatus. Crystallization trials were set up with N-RNA rings from three size classes and crystals were obtained in all cases. The best diffracting crystals, diffracting up to 6A, contained rings with 11 N-protomers plus an RNA molecule of 99 nucleotides. The diffraction limit was improved to 3.5A by air dehydration prior to flash freezing.  相似文献   

16.
核型多角体病毒有单核衣壳包埋型和多核衣壳包埋型之分,单核衣壳包埋型是在一个病毒囊膜内只包含一个核衣壳,而多核衣壳包埋型的特点是在一个病毒囊膜内包含有2个以上的核衣壳,由于多个核衣壳成束地被包装在同一个病毒囊膜内,又称病毒束[1,2]。Hunter等表明在干果斑螟核型多角体病毒中,病毒囊膜内包含2~23个核衣壳[3]。Fraser将苜蓿丫纹夜蛾核型多角体病毒接种于秋粘虫细胞系,超薄切片电镜观察,病毒囊膜内包含的核衣壳数变动于2~17粒,但未研究其核衣壳在病毒囊膜内的排列结构[4]。本研究用苜蓿丫纹…  相似文献   

17.
18.
The pathway of vesicular stomatitis virus N protein from synthesis to assembly into capsids was studied by use of detergent extraction of infected HeLa cells together with protein cross-linking. One half of the newly synthesized N protein was extracted with the soluble cell proteins and, when cross-linked, never formed the N-N dimer characteristic of mature nucleocapsids. In contrast, the cytoskeleton-bound N protein first showed a diffuse spectrum of protein-protein cross-links but, after a lag of 40 min, assumed the cross-link pattern of N protein in nucleocapsids. The efficiency of forming N-N cross-linked dimers is the same for N protein on the skeleton as in nucleocapsids derived from mature virus, suggesting very similar configurations. However, the N protein bound on the skeletal framework formed several additional cross-links that were not found in mature virus and were apparently formed to cellular proteins estimated to be ca. approximately 46,000 and 60,000 in molecular weight.  相似文献   

19.
Respiratory viruses are a cause of upper respiratory tract infections (URTI), but can be associated with severe lower respiratory tract infections (LRTI) in immunocompromised patients. The objective of this study was to investigate the genetic variability of influenza virus, parainfluenza virus and respiratory syncytial virus (RSV) and the duration of viral shedding in hematological patients. Nasopharyngeal swabs from hematological patients were screened for influenza, parainfluenza and RSV on admission as well as on development of respiratory symptoms. Consecutive swabs were collected until viral clearance. Out of 672 tested patients, a total of 111 patients (17%) were infected with one of the investigated viral agents: 40 with influenza, 13 with parainfluenza and 64 with RSV; six patients had influenza/RSV or parainfluenza/RSV co-infections. The majority of infected patients (n = 75/111) underwent stem cell transplantation (42 autologous, 48 allogeneic, 15 autologous and allogeneic). LRTI was observed in 48 patients, of whom 15 patients developed severe LRTI, and 13 patients with respiratory tract infection died. Phylogenetic analysis revealed a variety of influenza A(H1N1)pdm09, A(H3N2), influenza B, parainfluenza 3 and RSV A, B viruses. RSV A was detected in 54 patients, RSV B in ten patients. The newly emerging RSV A genotype ON1 predominated in the study cohort and was found in 48 (75%) of 64 RSV-infected patients. Furthermore, two distinct clusters were detected for RSV A genotype ON1, identical RSV G gene sequences in these patients are consistent with nosocomial transmission. Long-term viral shedding for more than 30 days was significantly associated with prior allogeneic transplantation (p = 0.01) and was most pronounced in patients with RSV infection (n = 16) with a median duration of viral shedding for 80 days (range 35–334 days). Long-term shedding of respiratory viruses might be a catalyzer of nosocomial transmission and must be considered for efficient infection control in immunocompromised patients.  相似文献   

20.
Viral nucleocapsids compartmentalize and protect viral genomes during assembly while they mediate targeted genome release during viral infection. This dual role of the capsid in the viral life cycle must be tightly regulated to ensure efficient virus spread. Here, we used the duck hepatitis B virus (DHBV) infection model to analyze the effects of capsid phosphorylation and hydrogen bond formation. The potential key phosphorylation site at serine 245 within the core protein, the building block of DHBV capsids, was substituted by alanine (S245A), aspartic acid (S245D) and asparagine (S245N), respectively. Mutant capsids were analyzed for replication competence, stability, nuclear transport, and infectivity. All mutants formed DHBV DNA-containing nucleocapsids. Wild-type and S245N but not S245A and S245D fully protected capsid-associated mature viral DNA from nuclease action. A negative ionic charge as contributed by phosphorylated serine or aspartic acid-supported nuclear localization of the viral capsid and generation of nuclear superhelical DNA. Finally, wild-type and S245D but not S245N virions were infectious in primary duck hepatocytes. These results suggest that hydrogen bonds formed by non-phosphorylated serine 245 stabilize the quarterny structure of DHBV nucleocapsids during viral assembly, while serine phosphorylation plays an important role in nuclear targeting and DNA release from capsids during viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号