首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Chinese lantern phenotype or inflated calyx syndrome (ICS) is a postfloral morphological novelty in Physalis. Its origin is associated with the heterotopic expression of the MADS box gene 2 from Physalis floridana (MPF2) in floral organs, yet the process underlying its identity remains elusive. Here, we show that MPF3, which is expressed specifically in floral tissues, encodes a core eudicot APETALA1-like (euAP1) MADS-domain protein. MPF3 was primarily localized to the nucleus, and it interacted with MPF2 and some floral MADS-domain proteins to selectively bind the CC-A-rich-GG (CArG) boxes in the MPF2 promoter. Downregulating MPF3 resulted in a dramatic elevation in MPF2 in the calyces and androecium, leading to enlarged and leaf-like floral calyces; however, the postfloral lantern was smaller and deformed. Starch accumulation in pollen was blocked. MPF3 MPF2 double knockdowns showed normal floral calyces and more mature pollen than those found in plants in which either MPF3 or MPF2 was downregulated. Therefore, MPF3 specifies calyx identity and regulates ICS formation and male fertility through interactions with MPF2/MPF2. Furthermore, both genes were found to activate Physalis floridana invertase gene 4 homolog, which encodes an invertase cleaving Suc, a putative key gene in sugar partitioning. The novel role of the MPF3-MPF2 regulatory circuit in male fertility is integral to the origin of ICS. Our results shed light on the evolution and development of ICS in Physalis and on the functional evolution of euAP1s in angiosperms.  相似文献   

2.
3.
Species that express the inflated calyx syndrome (ICS) are found in several genera of the Solanaceae. The MADS-box protein MPF2, together with the plant hormones cytokinin and gibberellin, has been shown to be responsible for this trait in Physalis floridana. We have used sequence data from 114 species belonging to 35 genera to construct a molecular phylogeny of Solanaceae. Apart from the 2 Witheringia species analyzed, species within a given genus cluster together on the resulting cladogram. Witheringia solanacea is embedded within the Physalinae, but Witheringia coccoloboides is placed basal to the Iochrominae. The ICS trait seems to be of multiple origins both within the Solanaceae and the Physaleae. Surprisingly, expression of MPF2-like genes in floral organs appears to be plesiomorphic in both the Physaleae and the Capsiceae. Some species in these tribes that show neither ICS nor calyx accrescence fail to express the MPF2-like gene in floral organs. Among those that do express this gene in the calyx are the species Capsicum baccatum, Lycianthes biflora, Tubocapsicum anomalum, W. solanacea, and Vassobia breviflora, all of which form small calyces that do not respond to externally applied hormones. The plesiomorphic nature of MPF2-like gene expression in the calyx of the Physaleae and Capsiceae raises the possibility that originally ICS also was actually a plesiomorphic character in these 2 groups. However, this trait might have undergone changes in a number of species due to secondary loss of components in ICS formation, like hormone response of calyx development. These findings are discussed in an evolutionary context of a molecular pathway leading to ICS.  相似文献   

4.
Zhang J  Khan MR  Tian Y  Li Z  Riss S  He C 《Planta》2012,236(4):1247-1260
The inflated calyx syndrome (ICS) is a post-floral novelty within Solanaceae. Previous work has shown that MPF2-like MADS-box genes have been recruited for the development and evolution of ICS through heterotopic expression from vegetative to floral organs. ICS seems to be a plesiomorphic trait in Physaleae, but it has been secondarily lost in some lineages during evolution. We hypothesized that molecular and functional divergences of MPF2-like proteins might play a role in the loss of ICS. In this study we analyzed the phylogeny, selection and various functions of MPF2-like proteins with respect to the evolution of ICS. Directional selection of MPF2-like orthologs toward evolution of ICS was detected. While auto-activation capacity between proteins varies in yeast, MPF2-like interaction with floral MADS-domain proteins is robustly detected, hence substantiating their integration into the floral developmental programs. Dimerization with A- (MPF3) and E-function (PFSEP1/3) proteins seems to be essential for ICS development within Solanaceae. Moreover, the occurrence of the enlarged sepals, reminiscent of ICS, and MPF2-like interactions with these specific partners were observed in transgenic Arabidopsis. The interaction spectrum relevant to ICS seems to be plesiomorphic, reinforcing the plesiomorphy of this trait. The inability of some MPF2-like to interact with either the A-function or any of the E-function partners characterized is correlated with the loss of ICS in the lineages that showed a MPF2-like expression in the calyx. Our findings suggest that, after recruitment of MPF2-like genes for floral development, diversification in their coding region due to directional selection leads to a modification of the MADS-domain protein interacting spectrum, which might serve as a constraint for the evolution of ICS within Solanaceae.  相似文献   

5.
6.
7.
Spassov DS  Jurecic R 《Gene》2002,299(1-2):195-204
Drosophila gene Pumilio (Pum) is a founder member of an evolutionarily conserved family of RNA-binding proteins that are present from yeast to mammals, and act as translational repressors during embryo development and cell differentiation. The human genome contains two Pumilio related genes, PUM1 and PUM2, that encode 127 and 114 kDa proteins with evolutionarily highly conserved Pum RNA-binding domain (86 and 88% homology with the fly Pum protein). PUM1 and PUM2 proteins share 83% overall similarity, with RNA-binding domain being 91% identical. Both PUM1 and PUM2 show relatively widespread and mostly overlapping expression in human tissues, and are very large genes with highly conserved gene structure. PUM1 consists of 22 exons, spanning about 150 kb on chromosome 1p35.2, whereas PUM2 consists of 20 exons and spans at least 80 kb on chromosome 2p23-24. Extremely high evolutionary conservation of the RNA-binding domain from yeast to humans, and conserved function of Pumilio proteins in invertebrates and lower vertebrates suggest that mammalian Pumilio proteins could also play an important role in translational regulation of embryogenesis and cell development and differentiation.  相似文献   

8.
9.
APETALA1 and SEPALLATA3 interact to promote flower development   总被引:21,自引:0,他引:21  
In Arabidopsis, the closely related APETALA1 (AP1) and CAULIFLOWER (CAL) MADS-box genes share overlapping roles in promoting flower meristem identity. Later in flower development, the AP1 gene is required for normal development of sepals and petals. Studies of MADS-domain proteins in diverse species have shown that they often function as heterodimers or in larger ternary complexes, suggesting that additional proteins may interact with AP1 and CAL during flower development. To identify proteins that may interact with AP1 and CAL, we used the yeast two-hybrid assay. Among the five MADS-box genes identified in this screen, the SEPALLATA3 (SEP3) gene was chosen for further study. Mutations in the SEP3 gene, as well as SEP3 antisense plants that have a reduction in SEP3 RNA, display phenotypes that closely resemble intermediate alleles of AP1. Furthermore, the early flowering phenotype of plants constitutively expressing AP1 is significantly enhanced by constitutive SEP3 expression. Taken together, these studies suggest that SEP3 interacts with AP1 to promote normal flower development.  相似文献   

10.
11.
Wang H  Gao MX  Li L  Wang B  Hori N  Sato K 《Genomics》2007,89(1):59-69
While isolating morphine-dependence-related genes with differential display, we cloned a novel human gene, zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1, alias MADP-1) encoding a nuclear protein (217 residues). The ZCRB1 gene consists of eight exons and seven introns. It is mapped to 12q12, which is within a locus reported for Parkinson disease (M. Funayama et al., Ann. Neurol. 51 (2002) 296-301). The 5'-flanking region contains an enhancer core motif and binding sites for AP-1, AP-2, and LF-A1. ZCRB1 is characterized by an RNA-binding motif and a CCHC zinc finger motif. The latter overlaps the C..C...GH....C core nucleocapsid motif. ZCRB1 is conserved from zebrafish to human and shares homology with cold-inducible RNA-binding protein. Transfection assay showed that ZCRB1 is located in the nucleoplasm, but outside the nucleolus. ZCRB1 gene expression was stimulated by morphine, inhibited by 30-36 degrees C, and up-regulated by 39 degrees C incubation in SH-SY5Y neural cells. Zcrb1 gene expression is highest in the heart and testes, lower in the cerebellum, and lowest in the liver in mice. ZCRB1 mRNA expression is specifically elevated in hepatocarcinoma HepG2 cells. These data provide new clues for further understanding of morphine dependence, heat shock, and hepatocarcinoma.  相似文献   

12.
The exon junction complex (EJC) plays important roles in RNA metabolisms and the development of eukaryotic organisms. MAGO (short form of MAGO NASHI) and Y14 (also Tsunagi or RBM8) are the EJC core components. Their biological roles have been well investigated in various species, but the evolutionary patterns of the two gene families and their protein-protein interactions are poorly known. Genome-wide survey suggested that the MAGO and Y14 two gene families originated in eukaryotic organisms with the maintenance of a low copy. We found that the two protein families evolved slowly; however, the MAGO family under stringent purifying selection evolved more slowly than the Y14 family that was under relative relaxed purifying selection. MAGO and Y14 were obliged to form heterodimer in a eukaryotic organism, and this obligate mode was plesiomorphic. Lack of binding of MAGO to Y14 as functional barrier was observed only among distantly species, suggesting that a slow co-evolution of the two protein families. Inter-protein co-evolutionary signal was further quantified in analyses of the Tol-MirroTree and co-evolution analysis using protein sequences. About 20% of the 41 significantly correlated mutation groups (involving 97 residues) predicted between the two families was clade-specific. Moreover, around half of the predicted co-evolved groups and nearly all clade-specific residues fell into the minimal interaction domains of the two protein families. The mutagenesis effects of the clade-specific residues strengthened that the co-evolution is required for obligate MAGO-Y14 heterodimerization mode. In turn, the obliged heterodimerization in an organism serves as a strong functional constraint for the co-evolution of the MAGO and Y14 families. Such a co-evolution allows maintaining the interaction between the proteins through large evolutionary time scales. Our work shed a light on functional evolution of the EJC genes in eukaryotes, and facilitates to understand the co-evolutionary processes among protein families.  相似文献   

13.
14.
Interaction study of MADS-domain proteins in tomato   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
The RNA-binding protein Y14 binds preferentially to mRNAs produced by splicing and is a component of a multiprotein complex that assembles approximately 20 nucleotides upstream of exon-exon junctions. This complex probably has important functions in post-splicing events including nuclear export and nonsense-mediated decay of mRNA. We show that Y14 binds to two previously reported components, Aly/REF and RNPS1, and to the mRNA export factor TAP. Moreover, we identified magoh, a human homolog of the Drosophila mago nashi gene product, as a novel component of the complex. Magoh binds avidly and directly to Y14 and TAP, but not to other known components of the complex, and is found in Y14-containing mRNPs in vivo. Importantly, magoh also binds to mRNAs produced by splicing upstream (approximately 20 nucleotides) of exon- exon junctions and its binding to mRNA persists after export. These experiments thus reveal specific protein-protein interactions among the proteins of the splicing-dependent mRNP complex and suggest an important role for the highly evolutionarily conserved magoh protein in this complex.  相似文献   

17.
Members of the RNA-binding protein superfamily contain RNA binding domains of about 90 amino acids with a highly conserved motif 'GFGF'. Using the conserved motif with some variations G-(F/Y)-(G/A)-(F/Y)-(V/I)-X-(F/Y) as a probe, we screened protein sequences carrying identical amino acids in an NBRF-protein database. It has been found that the C-terminal portion of clustered asparagine-rich protein (CARP), a malaria antigen from Plasmodium falciparum, shows an unexpected sequence similarity with the RNA-binding protein superfamily for the C-terminal half of the RNA-binding domain. Dot matrix comparisons and alignment of these sequences as well as a statistical test have revealed highly significant sequence similarities. From these analyses, we conclude that the malaria antigen CARP belongs to a large family of the RNA-binding proteins. An evolutionary implication of the sequence similarity was also discussed.  相似文献   

18.
Squamous epithelium in mammals has evolved an atypical stress response involving down-regulation of the classic HSP70 protein and induction of sets of proteins including one named SEP53. This atypical stress response might be due to the unusual environmental pressures placed on squamous tissue. In fact, SEP53 plays a role as an anti-apoptotic factor in response to DNA damage induced by deoxycholic acid stresses implicated in oesophageal reflux disease. SEP53 also has a genetic signature characteristic of an adaptively and rapidly evolving gene, and this observation has been used to imply a role for SEP53 in immunity. Physiological models of squamous tissue are required to further define the regulation and function of SEP53. We examined whether porcine squamous epithelium would be a good model to study SEP53, since this animal suffers from a bile-reflux disease in squamous oesophageal tissue. We have (1) cloned and sequenced the porcine SEP53 locus from porcine bacterial artificial chromosome genomic DNA, (2) confirmed the strikingly divergent nature of the C-terminal portion of the SEP53 gene amongst mammals, (3) discovered that a function of the conserved N-terminal domain of the gene is to maintain cytoplasmic localisation, and (4) examined SEP53 expression in normal and diseased porcine pars oesophagea. SEP53 expression in porcine tissue was relatively confined to gastric squamous epithelium, consistent with its expression in normal human squamous epithelium. Immunohistochemical staining for SEP53 protein in normal and damaged pars oesophagea demonstrated significant stabilisation of SEP53 protein in the injured tissue. These results suggest that porcine squamous epithelium would be a robust physiological model to examine the evolution and function of the SEP53 stress pathway in modulating stress-induced responses in squamous tissue.  相似文献   

19.
The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the ‘Chinese lantern’). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and development of the morphological diversities within the Solanaceae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号