首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The major objective of this study was to determine if the observed changes in polyamines and their biosynthetic enzymes during somatic embryo development were specifically related to either the stage of the embryo development or to the duration of time spent on the maturation medium. Somatic embryos of red spruce (Picea rubens) at different developmental stages, grown in the embryo development and maturation media for various lengths of time, were separated from the associated subtending tissue (embryogenic and the suspensor cell masses) and analyzed for their polyamine content as well as for polyamine biosynthetic enzyme activities. Polyamine content was also analyzed in embryos representing different stages of developmentthat were collected from the sam culture plate at the same time and the subtending tissue surrouding them. Putrescine was the predominant polyamine in the pro-embryogenic tissue, while spermidine was predominant during embryo development. Significant changes in spermidine/putrescine and spermine/putrescine ratios were observed at all stages of embryo development as compared to the pro-embryogenic cell mass. Changes in the ratios of various polyamines were clearly correlated with the developmental stage of the embryo rather than the period of growth in the maturation medium. Whereas the activities of both ornithine decarboxylase and arginine decarboxylase increased by week 3 or 4 and stayed high during the subsequent 6 wk of growth, the activity of S-adenosylmethionine decarboxylase steadily declined during embryo development.  相似文献   

2.
The metabolism of the polyamine precursors arginine and ornithine was studied in maturing and vernalised seeds of Picea abies (L.) Karst. (Norway spruce) in feeding experiments. Incorporation of radioactivity from these 14 C-labelled amino acids into liberated CO2, amino acids, polyamines, proteins and cell wall fractions, as well as polyamine levels were determined in embryos and megagametophytes. Ornithine and especially arginine decarboxylation was more active in the embryo than in the megagametophytic cells, and vernalisation increased arginine metabolism more than it increased ornithine metabolism. Both precursors were metabolised to each other, to other amino acids, and to polyamines. The only polyamine in which radioactivity incorporated was free putrescine, showing either a slow synthesis or a high degradation rate of spermidine and spermine in maturing spruce seeds. The putrescine level was approximately 10 times higher in the embryo than in the megagametophytic tissues, whereas spermidine and spermine levels were almost the same in both tissues. The label from arginine and ornithine was also incorporated into proteins as amino acids and post-translationally as polyamines. Higher radioactivity was seen in the small ≤14-kDa polypeptides. Protein hydrolysates of the embryo and the megagametophytic tissues contained spermidine and spermine and their degradation product 1,3-diaminopropane (DAP), suggesting that polyamines may play a role in the accumulation of seed storage protein and in the maturation of spruce seeds.  相似文献   

3.
Polyamine levels and the activities of two polyamine biosynthetic enzymes, arginine decarboxylase (EC 4.1.1.19) and S-adenosylmethionine decarboxylase (EC 4.1.1.50), were determined during somatic embryogenesis of carrot (Daucus carota L.) cell cultures. Embryogenic cultures showed severalfold increases in polyamine levels over nondifferentiating controls. A mutant cell line that failed to form embryos but grew at the same rate as the wild-type line also failed to show increases in polyamine levels, thus providing evidence that this increased polyamine content was in fact associated with the development of embryos. Furthermore, inhibition of these increases in polyamines caused by drugs inhibited embryogenesis and the effect was reversible with spermidine. The activities of arginine decarboxylase and Sadenosylmethionine decarboxylase were found to be suppressed by auxin; however, the specific effects differed between exogenous 2,4-dichlorophenoxyacetic acid and endogenous indole-3-acetic acid. The results indicate that increased polyamine levels are required for cellular differentiation and development occurring during somatic embryogenesis in carrot cell cultures.Abbreviations ADC arginine decarboxylase - 2,4-D 2,4-dichlorophenoxyacetic acid - DFMA difluoromethylarginine - DCHAS dicyclohexylammonium sulfate - SAMDC S-adenosylmethionine decarboxylase  相似文献   

4.
The effects of ethylene and auxin on polyamine levels were studied in suspension-cultured cells of tobacco ( Nicotiana tabacum . L). Treatment of 4-day-cultured cells with ethylene increased the levels of spermidine and spermine. The activities of arginine decarboxylase (ADC; EC 4.1.1.19), ornithine decarboxylase (ODC: EC 4.1.1.17), and S -adenosylmethionine decarboxylase (SAMDC: EC 4.1.1.50) rapidly increased between 3 and 12 h. An auxin, indole-3-acetic acid (IAA), increased polyamine levels and activities of ADC, ODC and SAMDC. The spermine level continued to increase significantly during a 24-h incubation with IAA. The increases in polyamine accumulation induced by ethylene were partially offset by an inhibitor of ethylene action, 2,5-norbornadiene. It is suggested that the auxin-induced polyamine accumulation occurred directly, without metabolic competition between ethylene and polyamine biosynthesis, and indirectly, through auxin-induced ethylene formation.  相似文献   

5.
The effects of exogenous ornithine, arginine and polyamines added to media leading to root, callus or bud initiation of Datura innoxia Mill. leaf explants growing in vitro were examined. Ornithine and arginine decarboxylase activities (ODC, EC 4.1.1.17; ADC, EC 4.1.1.19) as well as endogenous polyamine levels were also determined during the course of in vivo differentiation of the leaves and their subsequent in vitro dedifferentiation under rooting, callusing, or budding conditions. Decarboxylase activities were determined by measuring the 14CO2 released and the polyamines were quantified after dansylation by thin-layer chromatography. In vivo, ODC and ADC activities decreased from shoots to young to old leaves. In vitro, synergistic effects between ornithine and indole-3-acetic acid on rhizogenesis were detected, while arginine was not effective. Exogenous putrescine also acted synergistically with auxin by promoting root growth. A close relationship was found between rhizogenesis, ODC activity and increase in endogenous putrescine and spermidine levels. ODC increased during the induction and time course of cell dedifferentiation and seemed to support these events, while ADC seemed to support only the later events involving redifferentiation.  相似文献   

6.
E. Cohen  H. Kende 《Planta》1986,169(4):498-504
Submergence and treatment with ethylene or gibberellic acid (GA3) stimulates rapid growth in internodes of deepwater rice (Oryza sativa L. cv. Habiganj Aman II). This growth is based on greatly enhanced rate of cell-division activity in the intercalary meristem (IM) and on increased cell elongation. We chose polyamine biosynthesis as a biochemical marker for cell-division activity in the IM of rice stems. Upon submergence of the plant, the activity of S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) in the IM increased six- to tenfold within 8 h; thereafter, SAMDC activity declined. Arginine decarboxylase (ADC; EC 4.1.1.19) showed a similar but less pronounced increase in activity. The activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in the IM was not affected by submergence. The levels of putrescine and spermidine also rose in the IM of submerged, whole plants while the concentration of spermine remained low. The increase in SAMDC activity was localized in the IM while the activity of ADC rose both in the node and the IM above it. The node also contained low levels of ODC activity which increased slightly following submergence. Increased activities of polyamine-synthesizing enzymes in the nodal region of submerged plants probably resulted from the promotion of adventitious root formation in the node. Treatment of excised rice-stem sections with ethylene or GA3 enhanced the activities of SAMDC and ADC in the IM and inhibited the decline in the levels of putrescine and spermidine. We conclude that SAMDC and perhaps also ADC may serve as biochemical markers for the enhancement of cell-division activity in the IM of deepwater rice.Abbreviations ADC arginine decarboxylase - GA gibberellin - IM intercalary meristem - ODC ornithine decarboxylase - SAM S-adenosylmethionine - SAMDC SAM decarboxylase  相似文献   

7.
Biosynthetic arginine decarboxylase in phytopathogenic fungi   总被引:3,自引:0,他引:3  
A J Khan  S C Minocha 《Life sciences》1989,44(17):1215-1222
It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.  相似文献   

8.
9.
10.
Summary The effectiveness of inhibitors of polyamine biosynthesis in controlling plant pathogenic fungi is well established. The spermidine synthase inhibitor cyclohexylamine (CHA) and the spermidine analogue norspermidine were evaluated againstin vitro growth of the oat stripe pathogenPyrenophora avenae. Mycelial growth was reduced by 55% upon exposure to 2.0mM CHA while the same concentration of norspermidine reduced growth by 63%. Neither inhibitor had any effect on ODC or AdoMetDC activities, nor the flux of label from ornithine through to the polyamines. Levels of free polyamines in fungal tissue exposed to 0.01 mM norspermidine were unaltered, although 1.0mM CHA did produce a 75% increase in fungal putrescine content. These data suggest that CHA and norspermidine do not reduce fungal growth as a result of a perturbation in polyamine biosynthesis.Abbreviations ODC ornithine decarboxylase - ADC arginine decarboxylase - AdoMetDC S-adenosylmethionine decarboxylase - DFMO adifluoromethylornithine - CHA cyclohexylamine  相似文献   

11.
The main free amines identified during growth and development of rice seedlings were agmatine, putrescine, spermidine, diaminopropane and tyramine. Amine composition differed according to tissue and stages of development. Conjugated amines were only found in roots. We present evidence that arginine decarboxylase (ADC) regulates putrescine during the development of rice seedlings. When ADC action was blocked by DFMA (-DL-difluoromethylarginine, a specific irreversible inhibitor of ADC), polyamine titers and seedling development were diminished; when agmatine or putrescine was added, normal polyamine titers and growth were restored. The effects of DFMA were concentration dependent. DFMO (-DL-difluoromethylornithine, a specific irreversible inhibitor of ornithine decarboxylase or ODC) promoted growth and development at concentrations below 2 mM. This effect was probably related to its unexplained, but consistently observed slight enhancement of rice ADC. When the increase in the concentration of spermidine was prevented by CHA (cyclohexylammonium sulfate), the number of roots increased and the increase in length of leaves and roots was strongly inhibited. The addition of exogenous spermidine at the time of treatment with CHA reversed the inhibition by CHA.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - CHA cyclohexylammonium sulfate  相似文献   

12.
Early investigations on the productivity of intertidal seaweeds found that, unlike some seaweeds, members of the genus Porphyra, a Rhodophyte, could tolerate physical stressors such as ultraviolet-B radiation (UV-B) both during immersion and when exposed to air. Increased stress tolerance was thought to be due to an unknown mechanism that operated at the thylakoid level. As recent research has shown that polyamines (PAs), bound to the thylakoid membranes of chloroplasts, play a critical role in protecting the photosynthetic apparatus from high-light and UV damage in both higher plants and in unicellular algae, we investigated PA metabolism in Porphyra cinnamomea exposed to UV-B. Our results show that PA biosynthesis was significantly upregulated in P. cinnamomea in response to UV-B, with the greatest proportional increases being in bound soluble putrescine (PUT), which increased by over 200%, in bound soluble spermidine (SPD) and spermine (SPM) which both increased by more than 150% and in bound insoluble SPM which increased by more than 120%. As PAs can be synthesised from ornithine via ornithine decarboxylase (ODC) or from arginine via arginine decarboxylase (ADC) we investigated the pathway via which polyamines were synthesised in P. cinnamomea. While exposure to UV-B caused increases in the activities of both ADC and ODC, the increase in ADC activity was 10 fold greater than that of ODC, suggesting that the ADC pathway was the principle route by which PA levels increased in response to UV-B. Mechanisms of PA mediated UV-B protection are discussed.  相似文献   

13.
The origin and development of somatic embryos in calli initiated from immature zygotic embryos of Picea abies (L.) Karst. (Norway spruce) and P. glauca (Moench) Voss (white spruce) was studied. Immature zygotic embryos cultured on callus induction medium produced two types of white calli that were phenotypically different from one another. The callus that proliferated from the hypocotyl region was white to translucent, glossy, mucilaginous and embryogenic. The callus mass which originated from the radicle end was reddish-white, nonmucilaginous and nonembryogenic. Whole mount preparations of the entire explant with two different types of calli showed the presence of embryogenic cells in the mucilaginous callus mass derived from the hypocotyl region of the zygotic embryo. The origin of somatic embryos in both Norway and white spruce could be traced to single cells of the hypocotyl callus.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine  相似文献   

14.
Ornithine decarboxylase (ODC) activity and polyamine levels were measured during early development of the frog, Microhyla ornata. ODC activity was found to be high and it showed three major peaks during the first 60 hr of development. Putrescine and spermidine levels increased gradually during the above period with little change in spermine. Treatment of developing embryos with exogenous putrescine and spermidine prevented the normal increase in ODC activity. Spermine did not have any significant effect. Addition of ornithine also prevented the increase in ODC activity. Experiment using exogenous ornithine and alpha-methylornithine revealed that formation of putrescine and/or spermidine from ornithine is necessary for the suppression of ODC to occur. Suppression of ODC takes place even if conversion of putrescine to spermidine is blocked, indicating that putrescine, independent of its conversion to spermidine, also plays a role in ODC regulation.  相似文献   

15.
When gibberellic acid (GA3; 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA3 on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA3 also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA3 or by AMO-1618.  相似文献   

16.
Low levels of mannitol (2–6%) promoted the formation of globular embryos in embryogenic cultures of interior spruce ( Picea glauca engelmanni complex). However, these concentrations of mannitol were inhibitory to the formation of cotyledonary embryos. A short (1 week) pulse of mannitol in combination with abscisic acid doubled the production of late cotyledonary somatic embryos compared with the standard abscisic acid treatment. Higher levels of mannitol (13 and 20%) were required to inhibit precocious germination of spruce somatic embryos. These concentrations of mannitol promoted the accumulation of storage proteins during cotyledon maturation, but were not as effective as abscisic acid. Furthermore, 13 and 20% mannitol treatments did not substitute for abscisic acid in promoting the formation of cotyledonary embryos. Pre-treatment of late cotyledonary embryos with mannitol (13–25%) did not increase the frequency of germination compared with germination in non-treated embryos (approximately 10% germinated) although dehydration with high relative humidity treatment increased germination to 83%.  相似文献   

17.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

18.
The effect of inhibitors of polyamine biosynthesis on the development of embryogenic cell cultures of celery (Apium graveolus L.) was studied. Several developmental stages of somatic embryos were compared for differences in the content and biosynthesis of free polyamines and for cytokinin content. Cyclohexylamine and particularly methylglyoxal bis(guanylhydrazone), inhibited both cell division and the organization of polar embryos from globular embryos. Difluoromethylornithine slightly promoted embryo development, especially cell division.The free putrescine content of globular embryos was 6-fold that of fully differentiated plantlets, and that of spermidine 2-fold. Only a slight increase in the spermine content was found with embryo development. These differences were confirmed by data from polyamine biosynthesis. Incorporation of 14C-arginine into polyamines was slightly higher than that of 14C-ornithine. Over 96% of this incorporation was detected in the putrescine fraction. Incorporation of 14C into putrescine in globular embryos was 3 to 4-fold that in fully-differentiated plantlets. Incorporation into spermidine and spermine was, however, higher in plantlets than in globular embryos.Cytokinin analysis revealed considerable differences in the biological activity between the developmental stages of embryogenesis. This could be due to endogenous cytokinins and/or BA taken up from the maintenance medium. Cytokinin levels decreased with increased embryo development. Most of the detected cytokinin-like activity co-chromatographed with BA and its metabolites. Some as yet unidentified peaks of activity were recorded in the globular embryos.The results are considered with respect to the possible participation of polyamines and cytokinins in the development of embryogenic cell cultures of celery. It is suggested that the onset of embryogenesis is characterized by a high content of putrescine and cytokinins, while a decrease in putrescine synthesis and cytokinin content, and an increase in spermidine and spermine content, accompany further embryo development and plantlet formation.Abbreviation ADC arginine decarboxylase - ODC ornithine decarboxylase - 2,4-D dichlorophenoxyacetic acid - DFMA difluoromethylarginine - DFMO difluoromethylornithine - MGBG methylglyoxal bis(guanylhydrazone) - CHA cyclohexylamine - BA benzyladenine - BAR benzyladenine riboside  相似文献   

19.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

20.
The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5′-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号