首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate balance control during gait and sit-to-walk in individuals with bipolar disorder and healthy controls by examining the inclination angles between the whole-body center-of-mass (COM) and ankle in the sagittal plane. Twenty-one individuals with bipolar disorder in the euthymic (i.e., asymptomatic; n = 11) and depressed (n = 10) phases and 7 healthy controls (ages between 18 and 45) performed gait and sit-to-walk at self-selected comfortable speed. Mood phases for individuals with bipolar disorder were measured using the Patient Health Questionnaire and Altman Self-Rating Mania Scale. We collected motion data using a 16-camera motion capture technology. We found smaller COM-ankle inclination angles at seat-off during sit-to-walk for the bipolar-depressed group compared to the bipolar-euthymic and healthy groups, indicating poorly controlled balance for the bipolar-depressed group in sit-to-walk. However, we found larger COM-ankle inclination angles at beginning of single stance phase of gait for the bipolar-euthymic group compared to the healthy group, indicating well controlled balance for the bipolar-euthymic group in gait. Our results suggest an association between the depressed phase and balance impairment during daily movements in relatively young adults (ages ≤ 45 years). Our results also suggest that the depressed phase may be as detrimental to balance control as the effect of age-related neuromuscular weakness.  相似文献   

2.
Falls are a serious problem faced by the elderly. Older adults report mostly to fall while performing locomotor activities, especially the ones requiring stair negotiation. During these tasks, older adults, when compared with young adults, seem to redistribute their lower limb joint moments. This may indicate that older adults use a different strategy to accelerate the body upward during these tasks. The purposes of this study were to quantify the contributions of each lower limb joint moment to vertically accelerate the center of mass during stair ascent and descent, in a sample of community-dwelling older adults, and to verify if those contributions were correlated with age and functional fitness level. A joint moment induced acceleration analysis was performed in 29 older adults while ascending and descending stairs at their preferred speed. Agreeing with previous studies, during both tasks, the ankle plantarflexor and the knee extensor joint moments were the main contributors to support the body. Although having a smaller contribution to vertically accelerate the body, during stair descent, the hip joint moment contribution was related with the balance score. Further, older adults, when compared with the results reported previously for young adults, seem to use more their knee extensor moment than the ankle plantarflexor moment to support the body when the COM downward velocity is increasing. By contributing for a better understanding of stair negotiation in community dwelling older adults, this study may help to support the design of interventions aiming at fall prevention and/or mobility enhancement within this population.  相似文献   

3.
Older people may operate much closer to their maximum capabilities than young adults when ascending stairs due to their lower maximum musculoskeletal capabilities. The purpose of this study was to establish the joint moment and range of motion demands of stair ascent relative to maximum capabilities in elderly and young adults. Fifteen elderly (mean age 75 years) and 17 young adult (mean age 25 years) participants ascended a purpose-built 4-step staircase with force platforms embedded into the steps and kinematic data was acquired using motion capture. Maximum musculoskeletal capabilities were assessed using a dynamometer. This study showed for the first time that stair ascent approaches the joint moment limits at the ankle in both young and older participants (~90%). One of the most important and novel findings of this study was that elderly people were only capable of meeting the high demands by adopting a number of alternative strategies not observed in young adults: (i) applying the joint moments differently than young adults across the knee and ankle, (ii) translocating energy from the knee to the ankle, thereby enhancing the ankle joint moment upon maximum demand and (iii) by enabling the plantarflexors to act over a more favourable portion of the moment–angle relation upon maximum ankle joint moment demand. The elderly displayed a more cautious strategy to optimize positional stability during stair ascent, by maintaining a smaller separation between the centre of mass and centre of pressure in the frontal plane. It seems that elderly people may meet the demands of unaided stair ascent by adopting a number of alternative strategies to compensate for their reduced musculoskeletal capabilities.  相似文献   

4.
In this study, we aimed to establish the joint moment and joint range of motion requirements of stair descent and the demands relative to maximal capacities in elderly and young adults. Participants descended a custom-built standard dimension four-step staircase, at their self-selected speed in a step-over manner. Kinetic data were acquired from force platforms embedded into each of the steps and into the floor at the base of the stairs. A motion analysis system was used to acquire kinematic data and joint moments were calculated using the kinematic and kinetic data. Maximum capacities (joint moment and joint range of motion) were assessed using a dynamometer. During stair descent the elderly generated lower absolute ankle joint moments than the young, which enabled them to operate at a similar relative proportion of their maximal capacity compared to young adults (75%). The knee joint moments during stair descent were similar between groups, but the elderly operated at a higher proportion of their maximal capacity (elderly: 42%; young: 30%). Ankle plantarflexion-dorsiflexion angle changes were similar between groups, which meant that the elderly operated at a higher proportion of their maximal assisted dorsiflexion angle. These results indicate that the elderly redistribute the joint moments in order to maintain the task demands within 'safe' limits.  相似文献   

5.
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait.  相似文献   

6.
PurposeAn increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments (KAbM). Increases in step width (SW) may act to reduce this moment. The purpose of this study was to determine the effects of increased SW on knee biomechanics during stair negotiation of healthy-weight and obese participants.MethodsParticipants (24: 10 obese and 14 healthy-weight) used stairs and walked over level ground while walking at their preferred speed in two different SW conditions – preferred and wide (200% preferred). A 2 × 2 (group × condition) mixed model analysis of variance was performed to analyze differences between groups and conditions (p < 0.05).ResultsIncreased SW increased the loading-response peak knee extension moment during descent and level gait, decreased loading-response KAbMs, knee extension and abduction range of motion (ROM) during ascent, and knee adduction ROM during descent. Increased SW increased loading-response peak mediolateral ground reaction force (GRF), increased peak knee abduction angle during ascent, and decreased peak knee adduction angle during descent and level gait. Obese participants experienced disproportionate changes in loading-response mediolateral GRF, KAbM and peak adduction angle during level walking, and peak knee abduction angle and ROM during ascent.ConclusionIncreased SW successfully decreased loading-response peak KAbM. Implications of this finding are that increased SW may decrease medial compartment knee joint loading, decreasing pain and reducing joint deterioration. Increased SW influenced obese and healthy-weight participants differently and should be investigated further.  相似文献   

7.
The gastrocnemius medialis (GM) muscle plays an important role in stair negotiation. The aim of the study was to investigate the influence of cadence on GM muscle fascicle behaviour during stair ascent and descent. Ten male subjects (young adults) walked up and down a four-step staircase (with forceplates embedded in the steps) at three velocities (63, 88 and 116 steps/min). GM muscle fascicle length was measured using ultrasonography. In addition, kinematic and kinetic data of the lower legs, and GM electromyography (EMG) were measured. For both ascent and descent, the amount of fascicular shortening, shortening velocity, knee moment, ground reaction force and EMG activity increased monotonically with gait velocity. The ankle moment increased up to 88 steps/min where it reached a plateau. The lack of increase in ankle moment coinciding with further shortening of the fascicles can be explained by an increased shortening of the GM musculotendon complex (MTC), as calculated from the knee and ankle angle changes, between 88 and 116 steps/min only. For descent, the relative instant of maximum shortening, which occurred during touch down, was delayed at higher gait velocities, even to the extent that this event shifted from the double support to the single support phase.  相似文献   

8.
Gait is a powerful measurement tool to evaluate the functional decline throughout ageing. Falls in elderly adults happen mainly during the redirection of the center of mass of the body (CoM) in the transition between steps. In young adults, this step–to–step transition begins before the double contact phase (DC) with a simultaneous forward and upward acceleration of the CoM. We hypothesize that, compared to young adults, elderly adults would exhibit unbalanced contribution of the back leg and the front leg during the transition. We calculated the mean vertical push-off done by the back leg (FBACK) and the mean impact force on the front leg (FFRONT) during the transition. Eight young (mean ± SD; age: 24 ± 2 y) and 19 elderly (age: 74 ± 6 y) healthy adults walked on a force-measuring treadmill at five selected speeds ranging from 0.56 to 1.67 m·s−1. Results show that, at mid and high speeds, elderly adults exhibit a smaller FBACK compared to young adults, possibly linked to the decreased plantar flexion of the back foot. As a consequence, FFRONT is significantly increased and the transition begins lately in the step, at the beginning of DC. Also, elderly adults show an inability to accelerate the CoM upward and forward simultaneously. Our findings show a different adaptation of the step–to–step transition with speed in elderly adults and identify two potential indicators of gait impairment with age: the FFRONT/FBACK contribution and the synchronization between the upward and forward acceleration of the CoM during the transition.  相似文献   

9.
Single cycles of hopping and climbing were investigated in Japanese Pygmy Woodpeckers Picoides kizuki using motion analyses on video. Body movements on substrate angled from 0-90 degrees were compared for every 10 degrees. The body was inclined forward during stance phase for both small and large substrate angles, and the inclination amplitude increased when the substrate angle increased. The tail was bent ventrally almost simultaneously to this body inclination, and its amplitude was apparently high at large substrate angles. Most of the gait parameters changed when the stride length increased. The minimum body-tail angle and most of the parameters representing body movements during stance phase changed when the substrate angle increased, probably because gravity pulled the birds further backward when they were moving on a steeper slope. These parameters showed a clear difference between the data on substrate steeper than 40 degrees and lower than 30 degrees. The abrupt changes in these parameters most likely mean that the motor pattern changed from hopping to climbing between these angles.  相似文献   

10.
Single cycles of hopping and climbing were investigated in Japanese Pygmy Woodpeckers Picoides kizuki using motion analyses on video. Body movements on substrate angled from 0–90° were compared for every 10°. The body was inclined forward during stance phase for both small and large substrate angles, and the inclination amplitude increased when the substrate angle increased. The tail was bent ventrally almost simultaneously to this body inclination, and its amplitude was apparently high at large substrate angles. Most of the gait parameters changed when the stride length increased. The minimum body–tail angle and most of the parameters representing body movements during stance phase changed when the substrate angle increased, probably because gravity pulled the birds further backward when they were moving on a steeper slope. These parameters showed a clear difference between the data on substrate steeper than 40° and lower than 30°. The abrupt changes in these parameters most likely mean that the motor pattern changed from hopping to climbing between these angles.  相似文献   

11.
Sit-to-walk (STW) is a common functional and transitional task which challenges an individual's postural control systems. As aging is associated with an increased risk of falls during transitional movements, we biomechanically investigated the STW movement task in 12 healthy young and 12 healthy elderly individuals. Performance was evaluated utilizing motion analysis and two force plates. The principal finding of this study was the impaired performance of the healthy older adults. The older adults generated significantly less momentum prior to rising (p=0.011) and further delayed (p<0.001) the initiation of gait until standing more upright (p=0.036). The young adults successfully merged the component tasks shortly after seat-off and displayed significantly greater step length (p<0.001), step velocity (p<0.001), and tolerated greater separation of the center of pressure and center of mass at the end single support phase of the initial step (p=0.001). While the young adults fluidly merged the standing and walking task components, the older adults displayed a conservative movement performance during the STW task thereby limiting threats to their postural stability.  相似文献   

12.
Motion analysis of the lower extremities usually requires determination of the location of the hip joint center. The results of several recent studies have suggested that kinematic and kinetic variables calculated from motion analysis data are highly sensitive to errors in hip joint center location. "Functional" methods in which the location of the hip joint center is determined from the relative motion of the thigh and pelvis, rather than from the locations of bony landmarks, are promising but may be ineffective when motion is limited. The aims of the present study were to determine whether the accuracy of the functional method is compromised in young and elderly subjects when limitations on hip motion are imposed and to investigate the possibility of locating the hip joint center using data collected during commonly studied motions (walking, sit-to-stand, stair ascent, stair descent) rather than using data from an ad hoc trial in which varied hip motions are performed. The results of the study suggested that functional methods would result in worst-case hip joint center location errors of 26mm (comparable to the average errors previously reported for joint center location based on bony landmarks) when available hip motion is substantially limited. Much larger errors ( approximately 70mm worst-case), however, resulted when hip joint centers were located from data collected during commonly performed motions, perhaps because these motions are, for the most part, restricted to the sagittal plane. It appears that the functional method can be successfully implemented when range of motion is limited but still requires collection of a special motion trial in which hip motion in both the sagittal and frontal planes is recorded.  相似文献   

13.
This study was conducted to investigate the balance strategy of healthy young adults through a gait cycle using the margin of stability (MoS). Thirty healthy young adults participated in this study. Each performed walking five times at a preferred speed and at a fast speed. The MoS was calculated over a gait cycle by defining the base of support (BoS) changes during a gait cycle. The MoS was divided into medial/lateral and anterior/posterior components (ML MoS and AP MoS). The central values and the values at 12 gait events of the MoS were compared. Positive/negative integration of ML MoS (ML MoSPOS and ML MoSNEG, respectively) and the average ML/AP MoS over a cycle (ML/AP MoSmean) were significantly lower at a fast gait than at a preferred gait. ML/AP MoS were lower at a fast speed than at the preferred speed, except for the ML MoS immediately before left heel strike (pre left HS) and right and left heel strike (HS). ML/AP MoS were significantly lower immediately before heel strike (pre-HS) than in other gait events, regardless of walking speed. It was suggested that pre-HS is the most unstable moment in both ML/AP directions and a crucial moment in control of gait stability. The results presented above might be applicable as basic data regarding dynamic stability of healthy young adults through a gait cycle for comparisons with elderly people and patients with orthopedic disorders or neurological disorders.  相似文献   

14.
The effect of the heel height on the temporal, kinematic and kinetic parameters was investigated in 16 young and 11 elderly females. Kinematic and kinetic data were collected when the subjects ascended stairs with their preferred speed in two conditions: wearing low-heeled shoes (LHS), and high-heeled shoes (HHS). The younger adults showed more adjustments in forces and moments at the knee and hip in frontal and transverse planes. Besides a few significantly changes in joint forces and moments, the elder group demonstrated longer cycle duration and double stance phase, larger trunk sideflexion and hip internal rotation, less hip adduction while wearing HHS. Most differences in joint motions between two groups were found at the hip and knee either in LHS or HHS condition. Instead, the differences in moment occurred at the hip joint and only in HHS. The interaction of the heel height and age showed the influences of heel height on trunk rotation, hip abduction/adduction, and knee and hip force and moment at the frontal plane depended on age. These phenomena suggest that younger and elderly women adapt their gait and postural control differently during stair ascent (SA) while wearing HHS.  相似文献   

15.
Accidental falls are a leading cause of injury and death in the growing elderly population. Traumatic falls are frequent, costly, and debilitating. Control of balance during locomotion is critical for safe ambulation, but relatively little is known about the natural effect of aging on dynamic balance control. Samples of healthy young (n = 13) and elderly (n = 13) subjects were compared in the interactive measures of center of mass (COM) and center of pressure (COP) during level walking and obstacle crossing conditions. Obstacle heights were normalized to individual body height (2.5%, 5%, 10%, and 15%). Temporal-distance (T-D) variables of gait were also compared. Statistical analyses were conducted using a two-way ANOVA for subject group and obstacle height. T-D parameters were not significantly different between groups; nor were frontal plane COM and COP parameters. Significant age differences did exist for antero-posterior (A/P) motion of the COM (decreased motion in the elderly), and its relationship with the COP (reduced separation between the two variables in the elderly). Anterior COM velocities were also significantly lower in the elderly group. The results confirm the ability of healthy elderly adults to maintain dynamic balance control in the frontal plane during locomotion. Reduced A/P distances between the COM and COP indicate a conservative reduction of the mechanical load on joints of the supporting limb. This conservative strategy may be related to a reduction in muscle strength as it occurs in the natural aging process.  相似文献   

16.
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.  相似文献   

17.
Biomechanics of the knee during stair-ascent has mostly been studied using skin-marker-based motion analysis techniques, but no study has reported a complete assessment of the soft tissue artifacts (STA) and their effects on the calculated joint center translation, angles and moments at the knee in normal subjects during this activity. This study aimed to bridge the gap. Twelve young adults walked up a three-step stair while data were acquired simultaneously from a three-dimensional motion capture system, a force plate and a dynamic fluoroscopy system. The "gold standards" of poses of the knee were obtained using a 3D fluoroscopy method. The STA of the markers on the thigh and shank were then calculated, together with their effects on the calculated joint center translations, angles and moments at the knee. The STA of the thigh markers were greater than those on the shank, leading to significantly underestimated flexion and extensor moments, but overestimated joint center translations during the first half of the stance phase. The results will be useful for a better understanding of the normal biomechanics of the knee during stair-ascent, as a baseline for future clinical applications and for developing a compensation method to correct for the effects of STA.  相似文献   

18.
Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years.  相似文献   

19.
The aim of the present study was to establish the behavior of human medial gastrocnemius (GM) muscle fascicles during stair negotiation. Ten healthy male subjects performed normal stair ascent and descent at their own comfortable speed on a standard-dimension four-step staircase with embedded force platforms in each step. Kinematic, kinetic, and electromyographic data of the lower limbs were collected. Real-time ultrasound scanning was used to determine GM muscle fascicle length changes. Musculotendon complex (MTC) length changes were estimated from ankle and knee joint kinematics. The GM muscle was mainly active during the push-off phase in stair ascent, and the muscle fascicles contracted nearly isometrically. The GM muscle was mainly active during the touch-down phase of stair descent where the MTC was lengthened; however, the GM muscle fascicles shortened by approximately 7 mm. These findings show that the behavior and function of GM muscle fascicles in stair negotiation is different from that expected on the basis of length changes of the MTC as derived from joint kinematics.  相似文献   

20.
Trips are a major cause of falls and result from involuntary contact of the foot with the ground during the swing phase of gait. Adequate toe clearance during swing is therefore crucial for safe locomotion. To date, little is known about the effects of environmental factors and footwear on toe clearance. This study reports on modulation of toe clearance and toe clearance variability in response to changes in ground inclination, paving type, and shoe sole geometry. Toe clearance and toe clearance variability for ten healthy young adults were calculated two-fold: a) for the commonly-used position on the foremost part of the sole of the shoe and b) for the lowest of a total of 7 sole positions, located between the metatarsals and the toe tip across the entire width of the sole. Utilizing a full-factorial design we found that toe clearance was affected by ground inclination, paving type, and sole geometry regardless of the computational method used (with p-values<0.01) but the use of the foremost part of the sole for toe clearance calculation results is an overestimation of this value. Our findings highlight the importance of considering footwear and environmental factors when assessing the risk of tripping. Future work needs to investigate to which extent the same factors affect toe clearance in more vulnerable parts of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号