首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress caused by soil salinity and soil drought limits cotton productivity in China. To determine the tolerance levels of cotton, we assessed the effects of soil salinity and soil drought on the biochemical characteristics of the roots of two cotton cultivars (CCRI-44, salt-tolerant; Sumian 12, salt-sensitive). Specifically, we analyzed root biomass, fatty acid composition, antioxidative enzyme activity, lipid peroxidation, H+-ATPase and Ca2+-ATPase activities. The cotton root biomass of the two cultivars declined significantly under conditions of soil salinity, soil drought, and the two stressors combined. The antioxidant enzyme activity of the roots also decreased markedly, which caused lipid peroxidation to increase, and changed the composition of the fatty acid membrane. H+-ATPase, Ca2+-ATPase and antioxidant enzyme activity decreased more under the two stressors combined. However, H2O2 content and O2 ? generation increased under the two stressors combined, compared to each stressor separately. Overall, the combination of soil salinity and drought has a greater inhibitory effect and more harmful impact on root growth than each stressor separately. The higher tolerance of CCRI-44 to soil salinity and drought stress than Sumian 12 might be explained by differences in cotton root antioxidative enzyme activity. The lipid peroxidation levels of cotton roots might represent an important biochemical trait for stress tolerance.  相似文献   

2.
Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K+ efflux through depolarization‐activated outward rectifying potassium channels. At the same time, pea root apex was 10‐fold more sensitive to physiologically relevant H2O2 concentration and accumulated larger amounts of H2O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na+ into the xylem; this increase was only transient, and xylem and leaf Na+ concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na+ loading during the first few days of treatment but failed to prevent shoot Na+ elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na+ loading; (2) efficient control of H2O2 accumulation and reduced sensitivity of non‐selective cation channels to H2O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.  相似文献   

3.
Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na+ homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na+ levels in root and stem with the highest leaf Na+ concentration of all cultivars, resulting in a high Na+ shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na+ accumulation was found and the SDI for Na+ points to a role of stem Na+ accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na+ accumulation in stem tissue, resulting in reduced Na+ transport to the leaves.  相似文献   

4.
The inherent differences for salt tolerance in two maize cultivars (Agatti-2002 and Sahiwal-2002) were evaluated in pot experiments. Plants were grown in half-strength of Hoagland nutrient solution added with 0, 80, 100, 120, 140 and 160 mM of NaCl. Salt stress markedly reduced the shoot and root lengths and fresh and dry masses. Reduction in growth attributes was more pronounced in cv. Agatti-2002 than cv. Sahiwal-2002. Both maize cultivars exhibited significant perturbations in important biochemical attributes being employed for screening the crops for salt tolerance. Cultivar Sahiwal-2002 was found salt tolerant as compared to cv. Agatti-2002 because it exhibited lower levels of H2O2, malondialdehyde (MDA) and higher activities of antioxidant enzymes. In addition, cultivar Sahiwal-2002 exhibited less salt-induced degradation of photosynthetic pigments, lower levels of toxic Na+ and Cl and higher endogenous levels of K+ and K+/Na+ ratio. The results indicate that salt stress induced a marked increase in MDA, H2O2, relative membrane permeability, total soluble proteins and activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase andascorbate peroxidase). Moreover, increase in endogenous levels of Na+ and Cl and decrease in K+ and K+/Na+ ratio and photosynthetic pigments were recorded in plants grown under salinity regimes.  相似文献   

5.
To keep pace with ever growing global population, progressive and sustained increase in rice production is necessary, especially in areas with extremely variable climatic conditions, where rice crop suffers from numerous abiotic stresses including salinity. Designing an effective phenotyping strategy requires thorough understanding of plant survival under stress. The investigation was carried out with four rice cultivars namely FR13A, IR42, Rashpanjor, and Pokkali that differed in salinity tolerance. The study showed that a genotype with initial vigour had some advantage in preserving shoot biomass under salt stress. Though both FR13A and IR42 showed sensitivity to salinity, FR13A with higher initial biomass maintained greater dry weight under saline condition. Increase of Na+:K+ ratio under salinity, due to accelerated absorption of Na+ and lesser absorption of K+ compared to control, was considerably higher in susceptible (118–200 %) than in tolerant (33–48 %) genotypes. While Na+ concentration in shoot increased significantly in both tolerant and susceptible genotypes, decrease in shoot K+ content was noticed only in susceptible genotypes. The imbalance of Na+ and K+ contents led to increased H2O2 production, causing greater peroxidation of membrane lipids and reduction in chlorophyll content and CO2 photosynthetic rate. Certain chlorophyll fluorescence parameters could distinguish between salinity tolerant and sensitive genotypes. To protect the plant from oxidative damage, several enzymatic and nonenzymatic antioxidants such as ascorbate were involved. The genotypes with capacity to assemble antioxidant enzymes in time could detoxify the reactive oxygen species more efficiently, leading to greater protection and reduced impact of salt stress.  相似文献   

6.
Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed. The present study investigated the identification of salt tolerant mustard genotypes and better understanding the mechanism of salinity tolerance. Salt stresses significantly reduced relative water content (RWC), chlorophyll (Chl) content, K+ and K+ /Na+ ratio, photosynthetic rate (PN), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci) and increased the levels of proline (Pro) and lipid peroxidation (MDA) contents, Na+ , superoxide (O2•− ) and hydrogen peroxide (H2O2) in both tolerant and sensitive mustard genotypes. The tolerant genotypes maintained higher Pro and lower MDA content than the salt sensitive genotypes under stress condition. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) were increased with increasing salinity in salt tolerant genotypes, BJ-1603, BARI Sarisha-11 and BARI Sarisha-16, but the activities were unchanged in salt sensitive genotype, BARI Sarisha-14. Besides, the increment of ascorbate peroxidase (APX) activity was higher in salt sensitive genotype as compared to tolerant ones. However, the activities of glutathione reductase (GR) and glutathione S-transferase (GST) were increased sharply at stress conditions in tolerant genotypes as compared to sensitive genotype. Higher accumulation of Pro along with improved physiological and biochemical parameters as well as reduced oxidative damage by up-regulation of antioxidant defense system are the mechanisms of salt tolerance in selected mustard genotypes, BJ-1603 and BARI Sarisha-16.  相似文献   

7.
The effects of thiamin (Thi) applied as seed soaking or foliar spray on some key physiological parameters were investigated in two differentially salt-responsive maize (Zea mays L.) cultivars, DK 5783 and Apex 836 F1, exposed to saline stress in two different experiments. An initial experiment (germination experiment) was designed to identify appropriate doses of Thi which could lessen the deleterious effects of salt on plants and screen all available maize cultivars for their differential tolerance to salt stress (100 mM NaCl). The seeds of nine maize cultivars were soaked for 24 h in solutions containing six levels of Thi (25, 50, 75, 100, 125 and 150 mg l?1). Based on the results obtained from the germination experiment, maize cultivar DK 5783 was found to be the most salt tolerant and Apex 836 as the most sensitive cultivar. Also, of six Thi levels used, two levels (100 and 125 mg l?1) were chosen for subsequent studies. In the second experiment (glasshouse experiment), two maize cultivars, DK 5783 (salt tolerant) and Apex 836 (salt sensitive) were subjected to saline regime (100 mM NaCl) and two levels of Thi (100 and 125 mg l?1) applied as foliar spray. Salt stress markedly suppressed shoot and root dry mass, total chlorophylls (“a” + “b”), leaf water potential and maximum fluorescence yield (Fv/Fm) in the plants of both maize cultivars, but it increased proline accumulation, leaf osmotic pressure, malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations, electrolyte leakage (EL) as well as activities of some key antioxidant enzymes, superoxide dismutase (SOD; EC. 1.15.1.1), peroxidase (POD; EC. 1.11.1.7) and catalase (CAT; EC. 1.11.1.6). Salt-induced reduction in plant growth parameters was higher in the salt-sensitive cultivar, Apex 836, which was found to be associated with relatively increased EL, and MDA and H2O2 levels, and decreased activities of the key antioxidant enzymes. Application of Thi as seed soaking or foliar spray partly mitigated the deleterious effects of salinity on plants of both maize cultivars. The most promising effect of Thi on alleviation of adverse effects of salt stress on maize plants was found when it was applied as foliar spray at 100 mg l?1. Thiamin application considerably reduced tissue Na+ concentration, but improved those of N, P, Ca2+ and K+ in the salt-stressed maize plants. Exogenously applied thiamin-induced growth improvement in maize plants was found to be associated with reduced membrane permeability, MDA and H2O2 levels, and altered activities of some key antioxidant enzymes such as CAT, SOD and POD as well as increased photosynthetic pigment concentration under saline regime.  相似文献   

8.
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2‐type E3 ligase, OsSIRH2‐14 (previously named OsRFPH2‐14), which plays a positive role in salinity tolerance by regulating salt‐related proteins including an HKT‐type Na+ transporter (OsHKT2;1). OsSIRH2‐14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2‐14‐EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull‐down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2‐14 interacts with salt‐related proteins, including OsHKT2;1. OsSIRH2‐14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2‐14‐overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2‐14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt‐related proteins.  相似文献   

9.
Effect of soil salinity was studied in two maize (Zea mays L.) genotypes, DTP-w-c 9 (comparatively tolerant) and Prabhat (susceptible) under control and three levels of salinity at vegetative and anthesis stages during summer–rainy season. Salinity stress decreased relative water content (RWC), chlorophyll (Chl) and carotenoid (Car) contents, membrane stability index (MSI), potassium (K+) and calcium (Ca2+) contents, and increased the rate of superoxide radical (O2·−) production, contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), proline, glycine-betaine, total soluble sugars, sodium (Na+), and Na+/K+ and Na+/Ca2+ ratios in both the genotypes. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) increased up to S2 salinity level in both the genotypes, and up to highest salinity level (S3) in DTP-w-c 9 at the two stages. Salinity-induced decrease in RWC, Chl, Car, MSI, K+ and Ca2+ was significantly greater in Prabhat, which also recorded higher Na+ content and Na+/K+ and Na+/Ca2+ ratios than DTP-w-c 9. DTP-w-c 9 recorded higher contents of proline, glycine-betaine, total soluble sugars, K+, Ca2+, activity of SOD, APX, CAT, GR, and comparatively lower O2·−, H2O2 and TBARS contents compared to Prabhat. Results show that salinity tolerance of DTP-w-c 9, as manifested by less decrease in RWC, Chl, Car and MSI, is associated with maintenance of adequate levels of K+ and Ca2+, greater contents of osmolytes, higher antioxidant enzymes activity, and lower O2·−, H2O2, TBARS and Na+ contents than Prabhat.  相似文献   

10.

Salinity has been identified as key abiotic stress factor limiting rice production in many countries around the globe, including Bangladesh. In the present study, we examined the effects of salt-induced toxicity on growth of rice landraces for screening salt-tolerant genotypes by assessing morpho-physiological, biochemical, and molecular responses. Screening of 28 rice genotypes at seedling stage was performed at 12 dS m−1 salinity level in hydroponic media. Most of the rice genotypes showed an apparent reduction in growth traits, while a fewer showed less reduction under salinity stress. Euclidean clustering and heatmap based on morpho-physiological parameters dissected rice genotypes into three major clusters, viz., susceptible, moderately tolerant, and tolerant. Results of cluster analysis revealed Nonabokra, Hogla, Ghunsi, Holdegotal, Nonabokra, and Kanchon as salt-tolerant rice genotypes. These genotypes also were grouped using three microsatellite markers, viz., RM493, RM3412b, and RM140 that were closely linked to saltol QTL showed Hogla, Ghunsi, Holdegotal, Nonabokra, Kanchon, BINA dhan-8, and BINA dhan-10 as salt-tolerant genotypes considering genetic similarity in dendrogram. The positive relationships of Na+/K+ ratio with hydrogen peroxide (H2O2) and malondialdehyde (MDA), and antioxidant enzymes’ activity in the tolerant rice genotypes indicated their importance for improving salinity tolerance. The salt-tolerant landraces showed lower Na+/K+ ratio, high proline accumulation, lower H2O2 accumulation and MDA content, and higher catalase and ascorbate peroxidase activities. Higher antioxidant enzymes’ activity and lower H2O2 accumulation in tolerant genotypes indicate their abilities to fight against oxidative stress. Based on all morpho-physiological clustering, biochemical response, and molecular dendrogram, Nonabokra, Hogla, Ghunsi, Holdegotal, and Kanchon were identified as the salt-tolerant landraces. Therefore, these identified salt-tolerant landraces could be useful to improve breeding program for the development of salt-tolerant high-yielding rice cultivars in future.

  相似文献   

11.
Li  Na  Cao  Bili  Chen  Zijing  Xu  Kun 《Protoplasma》2022,259(2):385-398

Salt stress and alkali stress are major factors that affect the growth and production of Chinese cabbage. To explore their tolerant mechanism to salt and alkali stress, three salinity levels (0, 50, 100 mmol/L NaCl) and three different pH levels (pH6.5, pH7.5, pH8.5) were interactively applied on Qinghua (salt-tolerant–alkali-sensitive) and Biyu (salt-sensitive–alkali-tolerant) cultivars; the root morphology, ion content and antioxidant enzymes were determined. The results showed that the root morphology and root water content of Qinghua under S0pH7.5 and S0pH8.5 were seriously affected, and the content of H2O2 and MDA increased by 143%, 190% and 234%, 294%, respectively, compared with S0pH6.5; when Biyu was under S50pH6.5 and S100pH6.5 stress, the content of H2O2 and MDA increase to 152%, 208% and to 240%, 263%, respectively, but the activities and genes expression of SOD, POD, CAT, AAO, APX, DHAR and MDHAR did not change. The root and the contents of H2O2 and MDA were not affected when Qinghua was treated with salt and Biyu was treated with alkali, but the activities of the antioxidant enzymes increased to 150–200%, and their relative expression was overexpressed and 2.5–3.5-fold of the S0pH6.5. The increase of Na+ in Qinghua was limited under salt stress, Mg2+ in Biyu increased significantly under alkali stress. These all indicated that the adaptability of roots could reflect the degree of tolerance; Chinese cabbage with high salt and alkali tolerance enhanced the regulation of their absorption of ions and increased the relative expression and activities of related antioxidant enzymes.

  相似文献   

12.
The purpose of this study was to investigate the mechanisms underlying alleviation of salt stress by mycorrhization. Solanum lycopersicum L. cultivars Behta and Piazar with different salinity tolerance were cultivated in soil without salt (EC?=?0.63 dSm?1), with low (EC?=?5 dSm?1), or high (EC?=?10 dSm?1) salinity. Plants inoculated with the arbuscular mycorrhizal fungi Glomus intraradices (+AMF) were compared to non-inoculated plants (?AMF). Under salinity, AMF-mediated growth stimulation was higher in more salt tolerant Piazar than in sensitive Behta. Mycorrhization alleviated salt-induced reduction of P, Ca, and K uptake. Ca/Na and K/Na ratios were also better in +AMF. However, growth improvement by AMF was independent from plant P nutrition under high salinity. Mycorrhization improved the net assimilation rates through both elevating stomatal conductance and protecting photochemical processes of PSII against salinity. Higher activity of ROS scavenging enzymes was concomitant with lowering of H2O2, less lipid peroxidation, and higher proline in +AMF. Cultivar differences in growth responses to salinity and mycorrhization could be well explained by differences in ion balance, photochemistry, and gas exchange of leaves. Function of antioxidant defenses seemed responsible for different AMF-responsiveness of cultivars under salinity. In conclusion, AMF may protect plants against salinity by alleviating the salt-induced oxidative stress.  相似文献   

13.
14.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

15.
Growth, ionic responses, and expression of candidate genes to salinity stress were examined in two perennial ryegrass accessions differing in salinity tolerance. The salinity tolerant (PI265349) and sensitive accessions (PI231595) were subjected to 75-mM NaCl for 14 days in a growth chamber. Across two accessions, salinity stress increased shoot dry weight and concentrations of malondialdehyde (MDA) and Na+ in the shoots and roots, but decreased shoot Ca2+ and root K+ concentrations. Salinity stress also increased root expressions of SOS1, PIP1, and TIP1. Plant height and chlorophyll content were unaffected by salinity stress in the tolerant accession but significantly decreased in the sensitive accession. Shoot MDA content did not change in the tolerant accession but increased in the sensitive accession. A more dramatic increase in Na+ was found in the roots of the sensitive accession. Relative to the control, salinity stress reduced expression of SOS1, NHX1, PIP1, and TIP1 in the shoots but increased expression of these genes in the roots of the tolerant accession. Expression levels of SOS1 increased in the roots and expression of NHX1 increased in the shoots but decreased in the roots of the sensitive accession under salinity stress. A decline in PIP1 expression in the shoots and dramatic increases in TIP expression in both shoots and roots were found in the sensitive accession under salinity stress. The results suggested maintenance of plant growth and leaf chlorophyll content, lesser Na+ accumulation in the roots, and lower lipid peroxidation in the shoots which could be associated with salinity tolerance. The decreased expressions of SOS1, NHX1, and TIP1 in the shoots, and increased expressions of NHX1 and PIP1 in the roots might also be related to salinity tolerance in perennial ryegrass.  相似文献   

16.
Twenty winter cultivars of Triticum aestivum L. (wheat) were grown in solution culture with and without aluminum (Al) (74 μM, 2.0 mg L-1) for 14 days. Exposure to Al increased root growth of the most tolerant cultivar, while both root and shoot growth were depressed in all other cultivars. On the basis of a root tolerance index (RTI = weight of roots grown with Al/weight of roots grown without Al), cultivar tolerance to Al ranged 9-fold, from 0.13 ± 0.01 to 1.16 ± 0.10. Symptoms of Al toxicity were most evident on roots. Aluminum-affected roots were relatively short and thick and had numerous undeveloped laterals. Leaves of some cultivars showed chlorosis resembling iron deficiency, and others showed purple stems typical of phosphate deficiency. Plants of all cultivars grown with and without Al depressed the pH of nutrient solutions, presumably until NH4+ was depleted, at which point the pH increased. Cultivar tolerance, expressed both as the root tolerance index and a shoot tolerance index, was negatively correlated with the negative log of the mean hydrogen ion (H+) concentration, the minimum pH, and the slope of the pH decline, each calculated from pH data collected during the first 9 days of the experimental period before any sharp rises in pH occurred. These results are consistent with the hypothesis that the Al tolerance of a given cultivar is a function of its ability to resist acidification of the nutrient solution and hence to limit the solubility and toxicity of Al.  相似文献   

17.

Background and Aims

When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat.

Methods

Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl) concentrations were determined.

Key Results

Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat.

Conclusions

Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl ‘exclusion’ even in an O2-deficient, saline rooting medium.Key words: Aerenchyma, combined salinity and waterlogging, leaf Cl, leaf K+, leaf Na+, radial O2 loss, salt tolerance, salinity–waterlogging interaction, sea barleygrass, waterlogging tolerance, wheat, wild Triticeae  相似文献   

18.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

19.
Salt stress is a complex physiological trait affecting plants by limiting growth and productivity. Rice, one of the most important food crops, is rated as salt‐sensitive. High‐throughput screening methods are required to exploit novel sources of genetic variation in rice and further improve salinity tolerance in breeding programmes. To search for genotypic differences related to salt stress, we genotyped 392 rice accessions by EcoTILLING. We targeted five key salt‐related genes involved in mechanisms such as Na+/K+ ratio equilibrium, signalling cascade and stress protection, and we found 40 new allelic variants in coding sequences. By performing association analyses using both general and mixed linear models, we identified 11 significant SNPs related to salinity. We further evaluated the putative consequences of these SNPs at the protein level using bioinformatic tools. Amongst the five nonsynonymous SNPs significantly associated with salt‐stress traits, we found a T67K mutation that may cause the destabilization of one transmembrane domain in OsHKT1;5, and a P140A alteration that significantly increases the probability of OsHKT1;5 phosphorylation. The K24E mutation can putatively affect SalT interaction with other proteins thus impacting its function. Our results have uncovered allelic variants affecting salinity tolerance that may be important in breeding.  相似文献   

20.

Salinity, as a serious and prevalent abiotic stress, causes widespread crop losses by restricting plant growth and production throughout the world. In this study, the biochemical and molecular responses of the pistachio (Pistacia vera L.) plant were studied under NaCl and salicylic acid (SA) treatments using hydroponically grown salt tolerant (Ghazvini) and salt sensitive (Sarakhs) pistachio cultivars. NaCl treatment (250 mM) increased the production of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and the activity of antioxidant enzymes in both cultivars. In the sensitive cultivar, the H2O2 content was higher than the tolerant cultivar, especially in the roots. SA application to both salt-stress-treated cultivars resulted in an increase in photosynthetic pigment contents and antioxidant enzyme activity and a decrease in the H2O2 and MDA contents. After NaCl treatment, the isochorismate synthase (ICS) gene was upregulated in Ghazvini which leads to an increase in the SA content of the salt tolerant pistachio cultivar. In contrast, the salt treatment downregulated the expression of the ICS gene in Sarakhs. The ICS gene expression was positively regulated by SA treatment under the salt stress condition. Our results suggest that Ghazvini has higher salinity tolerance than Sarakhs due to its higher antioxidant capacity, photosynthetic pigment content, and the cultivar-specific expression pattern of the ICS gene. In this study, the potential alleviative effects of SA on the adverse effect of salt stress in P. vera (Pistacia vera) were also identified and highlighted.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号