首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)–Tween 85–polyphenol system. Based on studies of ultraviolet–visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2(1Δg)O2(1g). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)–Tween 85–citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A simple indole‐based receptor 1 was prepared by a simple Schiff‐base reaction of 1H‐indole‐3‐carbaldehyde with ethane 1,2‐diamine and its fluoroionophoric properties toward anions were investigated. Indole‐based receptor 1 acts as a selective turn‐on fluorescent sensor for HSO4? in methanol among a series of tested anions. Fluorescence spectroscopy, ultraviolet and nuclear magnetic resonance imaging support that the HSO4 indeed interacted with imine nitrogen and the proton of nitrogen in indole ring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The oxidation reaction of luminol with AgNO3 can produce chemiluminescence (CL) in the presence of silver nanoparticles (NPs) in alkaline solution. Based on the studies of UV‐vis absorption spectra, photoluminescence (PL) spectra and CL spectra, a CL enhancement mechanism is proposed. The CL emission spectrum of the luminol–AgNO3–Ag NPs system indicated that the luminophore was still 3‐aminophthalate. On injection of silver nanoparticles into the mixture of luminol and AgNO3, they catalysed the reduction of AgNO3 by luminol. The product luminol radicals reacted with the dissolved oxygen, to produce a strong CL emission. As a result, the CL intensity was substantially increased. Moreover, the influences of 18 amino acids, e.g. cystine, tyrosine and asparagine, and 25 organic compounds, including gallic acid, tannic acid and hydroquinone, on the luminol–AgNO3–Ag NPs CL system were studied by a flow‐injection procedure, which led to an effective method for detecting these compounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Luminescence》2002,17(5):293-298
The reaction of the tetravalent uranium [U(IV)] with dimethyldioxirane (DMD) in strongly acidic water–acetone solutions is accompanied by chemiluminescence (CL) in the visible (Vis) and infra‐red (IR) regions. At least three independent reaction pathways are involved in the U(IV)–DMD oxidation: the first entails the non‐chemiluminescent oxidation of U(IV) to the uranyl ion (UO22+); the second involves the catalytic decomposition of DMD by U(IV) to afford singlet oxygen, as manifested by its characteristic IR‐CL; and in the third process, slow Vis‐CL (510–540 nm) is emitted, following DMD consumption. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and sensitive DNA‐stablized gold nanoparticle (AuNP)‐based chemiluminescent (CL) probe for detecting mercury ion (Hg2+) in aqueous solution has been developed. The CL strategy relies upon the catalytic activity of unmodified AuNPs on the luminol–H2O2 CL reaction, and the interaction of unmodified AuNPs with DNA. The unmodified AuNPs can effectively differentiate unstructured and folded DNA. The DNA desorbs from AuNPs in the presence of Hg2+, leading to the increase in CL signal. By rationally varying the number of thymine in single‐strand oligonucleotides, the detection range could be tuned. Employing single‐strand oligonucleotides with 14 thymine in the detecting system, a sensitive linear range for Hg2+ ions from 5.0 × 10–10 to 1.0 × 10–7 mol/L and a detection limit of 2.1 × 10–10 mol/L are obtained. Changing the number of thymine to 10 and 6, it leads to a narrow detection range but a high sensitivity. Besides, DNA‐based CL nanoprobes exhibit a remarkable selectivity for Hg2+ ions over a variety of competing metal ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The chemiluminescence (CL) of lucigenin (Luc2+) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N‐methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited‐state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO) demonstrated that superoxide anions (O2?–) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2?? production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc2+ into lucigenin cation radicals (Luc?+), which react with O2?? to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Oscillating chemiluminescence enhanced by the addition of tri‐n‐propylamine (TPrA) to the typical Belousov–Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'‐bipyridine)(Ru(bpy)32+) was investigated using a luminometry method. The [Ru(bpy)3]2+/TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3]2+/TPrA–BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3]2+/TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and sensitive flow injection chemiluminescence (FI–CL) method is described for the determination of 2‐methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide–calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10‐8 to 1.0 × 10‐6 mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10‐9 mol/L. The relative standard deviation (RSD) for 5.0 × 10‐7 mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, rapid and sensitive method has been developed for the analysis of fexofenadine (FEX) in pharmaceutical formulations, using a tris(1,10‐phenanthroline)–ruthenium(II) [Ru(phen)32+] peroxydisulphate chemiluminescence (CL) system in a multichip device. Various parameters that influence the CL signal intensity were optimized. These included pH, flow rates and concentration of reagents used. Under optimum conditions, a linear calibration curve in the range 0.05–5.0 µg/mL was obtained. The detection limit was found to be 0.001 µg/mL. The procedure was applied to the analysis of FEX in pharmaceutical products and was found to be free from interference from concomitants usually present in these preparations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A novel chemiluminescence (CL) method was developed for the determination of 10‐hydroxycamptothecin(HCPT) based on the CL reaction between [Ag(HIO6)2]5? and luminol in alkaline solution. CL emission of Ag(III) complex–luminol in alkaline medium was very different from that in acidic medium. A possible mechanism of enhanced CL emission was suggested. The enhanced effect of HCPT on CL emission of the [Ag(HIO6)2]5?–luminol system was found. The enhanced degree of CL emission was proportional to HCPT concentration. The effect of the reaction conditions on CL emission was examined. Under optimal conditions, the limit of detection was 6.5 × 10?9 g mL?1. The proposed method was applied for the determination of HCPT in real samples with the recoveries of 93.2–109% with the RSD of 1.7–3.3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A novel automated precolumn derivatization followed by separation using liquid chromatography for the determination of pseudoephedrine (PSE) by a microfluidic chemiluminescence detector has been developed. An on‐line derivatization procedure was utilized by converting PSE into a highly light emitting species in a Ru(bipy)32+‐peroxydisulphate chemiluminescence (CL) system by derivatizing it with a 1.0 M formaldehyde solution. The derivatized analyte was directly injected into a microbore high‐performance liquid chromatography (HPLC) system coupled to an on‐chip chemiluminescence detector. The newly developed highly selective, sensitive and fast HPLC‐CL method was validated and successfully applied for the analysis of PSE in pharmaceutical formulations and a human urine sample. The selectivity of the method is not only due to the HPLC separation but is also due to the highly selective detection principle of the Ru(bipy)32+‐peroxydisulphate CL system used. There was no interference observed from the common preservatives and excipients used in pharmaceutical preparations, which did not show any significant CL signal. The retention time of PSE was less than 3 min, and the detection limits and quantification limits were found to be 5.7 and 26.0 µg L–1, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We studied the chemiluminescence (CL) oxidation of phenyl hydrazine–luminol with various organic and inorganic peroxides. Maximum CL intensity for this system was obtained for t‐butylhydroperoxide. The enhancement in CL depended strongly on pH and was greatest at pH 12.5. The solvent drastically enhanced the CL intensity. DMSO was found to increase the CL intensity many‐fold as compared to acetonitrile and water. The effect of temperature on CL intensity has also been studied. The CL spectra revealed a broad peak at 425 nm, which suggests excited 3‐aminophthalate ion as the luminophor. A mechanism to explain the reactions is suggested. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
《Luminescence》2003,18(6):341-345
A chemiluminescence (CL) signal was observed when alkaline earth metal ion solution, Mg2+ or Ca2+ or Ba2+, was injected into a reaction mixture of fluorescein and potassium permanganate. A possible CL mechanism is proposed based upon the CL, fluorescence and UV‐visible spectra. Furthermore, the feasibility of the application of these reactions to the analysis of these alkaline earth metal ions was evaluated and the analytical parameters of the methods were determined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Visible oscillating chemiluminescence (CL) of luminol–H2O2–KSCN–CuSO4 was studied using the organic base (2‐hydroxyethyl)trimethylammonium hydroxide. The effect of concentrations of luminol, H2O2, KSCN, CuSO4 and the base were investigated in a batch reactor. This report shows how the concentration of components involved in the oscillating CL system influenced the oscillation period, light amplitude and total time of light emission. The oscillating CL with different bases was also investigated. Results indicated that using 2‐HETMAOH causes regular oscillating CL with nearly the same oscillating period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Na Li  Shubiao Ni 《Luminescence》2014,29(8):1130-1134
The use of noble metal nanoparticles (NPs) as reductants in chemiluminescence (CL) has been reported only rarely owing to their high oxidation potentials. Interestingly, nucleophiles could dramatically lower the oxidation potential of Ag NPs, such that in the presence of nucleophiles Ag NPS could be used as reductants to induce the CL emission of luminol, an important CL reagent widely used in forensic analysis for the detection of trace amounts of blood. Although nucleophiles are indispensible in Ag NP‐luminol CL, only inorganic nucleophiles such as Cl, Br, I and S2O32‐ have been shown to be efficient. The effects of organic nucleophiles on CL remain unexplored. In this study, 20 standard amino acids were evaluated as novel organic nucleophiles in Ag NP‐luminol CL. Histidine, lysine and arginine could initiate CL emission; the others could not. It is proposed that the different behaviors of 20 standard amino acids in the CL reactions derive from the interface chemistry between Ag NPs and these amino acids. UV/vis absorption spectra were studied to validate the interface chemistry. In addition, imidazole and histidine were chosen as a model pair to compare the behavior of the monodentate nucleophile with that of the corresponding multidentate nucleophile in Ag NP‐luminol CL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A chemiluminescent technique was applied to determine antioxidative activities of adriamycin, farmorubicin, mitomycin C and bleomycin against superoxide anion radical (O2?) in aprotic medium. The antioxidant capacity was expressed as the decrease in light emission from the O2? solution by and antibiotic. A KO2 solution in dimethyl sulphoxide (DMSO) and 18‐crown‐6 ether were used for the generation of O2?. The results showed that the examined compounds decreased the chemiluminescence (CL) sum from the O2?‐generating system in a dose‐dependent manner. Among the antibiotics examined, adriamycin, farmorubicin and bleomycin exhibited antioxidant activity almost comparable to that of 1,2‐dihydroxy benzene‐3,5‐disulphonic acid (tiron), an efficient of the O2? inhibitor. Mitomycin C was two‐times less effective as tiron in decreasing the initial CL intensity. The proposed assay with usage of ultraweak CL technique and the KO2–DMSO–crown ether system was useful for the evaluation of antioxidant activity in aprotic solvents. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号