首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The soybean PI 437654 is resistant to all known races of the soybean cyst nematode (SCN) in the U.S.A. and became a new source of resistance genes in cultivar development. Race 3, a wide-ranging nematode pathotype, was used to examine root cells of PI 437654 and susceptible 'Essex', 2, 3, and 5 days after inoculation (DAI). In initial response to SCN, both genotypes formed syncytia by cell wall dissolutions. Hypertrophy of syncytium component cells and hyperplasia of cells near syncytia were observed. At 2 DAI, incompatible response of PI 437654 to SCN was exhibited: limited cell hypertrophy, inhibition of syncytium growth, initiation of necrosis, and wall appositions. At 3 DAI, cellular events appeared to be a sum of the operative mechanisms for SCN resistance: irregular wall thickening, pronounced wall appositions, necrosis, and nuclear breakdown followed by cytoplasmic collapse. The cells surrounding the syncytia showed necrosis, wall apposition, and accumulation of electron-dense bodies. By 5 DAI, syncytia and neighboring cells were totally devoid of ground plasma and the degeneration process was completed. The normal route for early syncytium development in 'Essex' (increased number of organelles, intense vacuolization, accumulation of dense deposits in vacuoles, and wall ingrowths) suggests the involvement of portions of the developmental pathway of differentiating tissues in organogenesis. Early onset of SCN resistance 2 DAI in PI 437654 suggests rapid activation of genes in a cascade reaction leading to cell death. Key words : soybean, nematode, syncytium, cell death.  相似文献   

2.
We hypothesized that soybean cyst nematode (SCN; Heterodera glycines) co-opts part or all of one or more innate developmental process in soybean (Glycine max) to establish its feeding structure, syncytium, in soybean roots. The syncytium is formed within the vascular bundle by partial degradation of cell walls and membranes between adjacent parenchyma cells. A mature syncytium incorporates as many as 200 cells into one large multinucleated cell. Gene expression patterns for several cell wall-modifying proteins were compared in multiple tissues undergoing major shifts in cell wall integrity. These included SCN-colonized roots, root tips where vascular differentiation occurs, flooded roots (aerenchyma), adventitious rooting in hypocotyls, and leaf abscission zones. A search in the 5' upstream promoters of these genes identified a motif (SCNbox1: WGCATGTG) common to several genes that were up-regulated in several different tissues. The polygalacturonase 11 promoters (GmPG11a/b) include the SCNbox1 motif. The expression pattern for GmPG11a was examined further in transgenic soybean containing a PG11a promoter fused to a β-glucuronidase (GUS) reporter gene. GUS expression was highest in cells undergoing radial expansion in the stele and/or cell wall dissolution. GUS staining was not observed in cortical cells where a lateral root tip or a growing nematode emerged through the root cortex.  相似文献   

3.
4.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

5.
6.
7.
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as “syncytium highly connected hubs”, potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure–function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.  相似文献   

8.
The life cycle of the soybean cyst nematode, Race 3 (SCN 3), Heterodera glycines Inchinohe was determined from observations of the developmental stages on soybean Glycine max cv. Kent root explants under gnotobiotic conditions at 25 C. Approximately 51% of the second-stage larvae penetrated the root l day after inoculation (DAI). Third-stage larvae appeared 4 DAI, became sexually differentiated 5 DAI, and protruded from the root tissues 6 DAI. Fourth-stage males and females were observed 7 DAI. Ensheathcd adult males were observed at 9 DAI and exsheathed to free adults at 11 DAI. The fourth-stage female became an adult at l0 DAI, Males entwined arotmd the gelatinons sac of the female at 12 DAI and were assumed to be mating. Some males actually penetrated and were enveloped by the gelatinous sac. The female-to-male sex ratio ranged from 2.3 to 9.5:1. First- and second-stage larvae were observed in the egg 17 and 19 DAI, respectively. The life cycle of the SCN 3 was completed 21 DAI upon hatching of the eggs and emergence of second-stage larvae. The average number of eggs in the cyst body and gelatinous sac, was 210 and 187, respectively. Key words: reproduction, soybean cyst nematode, scanning electron microscopy.  相似文献   

9.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is a highly recalcitrant endoparasite of soybean roots, causing more yield loss than any other pest. To identify quantitative trait loci (QTL) controlling resistance to SCN (HG type 2.5.7, race 1), a genome-wide association study (GWAS) was performed. The association panel, consisting of 120 Chinese soybean cultivars, was genotyped with 7189 single nucleotide polymorphism (SNPs). A total of 6204 SNPs with minor allele frequency >0.05 were used to estimate linkage disequilibrium (LD) and population structure. The mean level of LD measured by r 2 declined very rapidly to half its maximum value (0.51) at 220 kb. The overall population structure was approximately coincident with geographic origin. The GWAS results identified 13 SNPs in 7 different genomic regions significantly associated with SCN resistance. Of these, three SNPs were localized in previously mapped QTL intervals, including rhg1 and Rhg4. The GWAS results also detected 10 SNPs in 5 different genomic regions associated with SCN resistance. The identified loci explained an average of 95.5% of the phenotypic variance. The proportion of phenotypic variance was due to additive genetic variance of the validated SNPs. The present study identified multiple new loci and refined chromosomal regions of known loci associated with SCN resistance. The loci and trait-associated SNPs identified in this study can be used for developing soybean cultivars with durable resistance against SCN.  相似文献   

10.
Ultrastructural observations of the feeding sites of soybean cyst nematode juveniles 3 days after inoculation of soybean roots revealed the presence of feeding tubes in the host cell syncytium. Feeding tubes, which were extruded from the stylet tips, were formed by products of secretory granules that originated in the dorsal esophageal gland and accumulated in the ampulla of the gland extension. Granules traversing the space between the gland cell and the ampulla were regulated in their movement by two sets of sphincter-like muscles located anterior and posterior to the metacorpus pump chamber. Sections through the sphincter muscles revealed obliquely arranged fibers, which in a contracted mode caused microtubules in the gland extension to be tightly packed and devoid of granules.  相似文献   

11.
Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.  相似文献   

12.
Infection of the soybean root by the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) induces a well-documented, yet poorly understood, response by the host plant. The plant response, involving the differentiation of a feeding structure, or "syncytium," facilitates the feeding and reproduction of the nematode to the detriment of the host. We used a genetic system involving a single dominant soybean gene conferring susceptibility to an inbred nematode strain, VL1, to characterize the nematode-host interaction in susceptible line PI 89008. The restriction fragment length polymorphism marker pB053, shown to map to a major SCN resistance locus, cosegregates with resistance among F2 progeny from the PI 89008 x PI 88287 cross. Cytological examination of the infection process confirmed that syncytium development in this genetic system is similar to that reported by others who used noninbred nematode lines. Our study of infected root tissue in the susceptible line PI 89008 revealed a number of genes enhanced in expression. Among these are catalase, cyclin, elongation factor 1alpha, beta-1,3-endoglucanase, hydroxy-methylglutaryl coenzyme A reductase, heat shock protein 70, late embryonic abundant protein 14, and formylglycinamidine ribonucleotide synthase, all of which we have genetically positioned on the public linkage map of soybean. Formylglycinamidine ribonucleotide synthase was found to be tightly linked with a major quantitative trait locus for SCN resistance. Our observations are consistent with the hypothesis proposed by others that feeding site development involves the dramatic modulation of gene expression relative to surrounding root cells.  相似文献   

13.
The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix® soybean GeneChip® directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.  相似文献   

14.
? Plant-parasitic cyst nematodes form a feeding site, termed a syncytium, through which the nematode obtains nutrients from the host plant to support nematode development. The structural features of cell walls of syncytial cells have yet to be elucidated. ? Monoclonal antibodies to defined glycans and a cellulose-binding module were used to determine the cell wall architectures of syncytial and surrounding cells in the roots of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii. ? Fluorescence imaging revealed that the cell walls of syncytia contain cellulose and the hemicelluloses xyloglucan and heteromannan. Heavily methyl-esterified pectic homogalacturonan and arabinan are abundant in syncytial cell walls; galactan could not be detected. This is suggestive of highly flexible syncytial cell walls. ? This work provides important information on the structural architecture of the cell walls of this novel cell type and reveals factors that enable the feeding site to perform its functional requirements to support nematode development.  相似文献   

15.
Host-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway®-compatible hm plant transformation system was developed specifically for these experiments in G. max. Three steps then were taken to identify H. glycines candidate genes. First, a pool of 150 highly conserved H. glycines homologs of genes having lethal mutant phenotypes or phenocopies from the free living nematode Caenorhabditis elegans were identified. Second, annotation of those 150 genes on the Affymetrix® soybean GeneChip® allowed for the identification of a subset of 131 genes whose expression could be monitored during the parasitic phase of the H. glycines life cycle. Third, a microarray analyses identified a core set of 32 genes with induced expression (>2.0-fold, log base 2) during the parasitic stages of infection. H. glycines homologs of small ribosomal protein 3a and 4 (Hg-rps-3a [accession number CB379877] and Hg-rps-4 [accession number CB278739]), synaptobrevin (Hg-snb-1 [accession number BF014436]) and a spliceosomal SR protein (Hg-spk-1 [accession number BI451523.1]) were tested for functionality in hm expression studies. Effects on H. glycines development were observed 8 days after infection. Experiments demonstrated that 81–93% fewer females developed on transgenic roots containing the genes engineered as tandem inverted repeats. The effect resembles RNA interference. The methodology has been used here as an alternative approach to engineer resistance to H. glycines.  相似文献   

16.
17.
18.
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pathogens of soybeans. SCN is an obligate and sedentary parasite that transforms host plant root cells into an elaborate permanent feeding site, a syncytium. Formation and maintenance of a viable syncytium is an absolute requirement for nematode growth and reproduction. In turn, sensing pathogen attack, plants activate defence responses and may trigger programmed cell death at the sites of infection. For successful parasitism, H. glycines must suppress these host defence responses to establish and maintain viable syncytia. Similar to other pathogens, H. glycines engages in these molecular interactions with its host via effector proteins. The goal of this study was to conduct a comprehensive screen to identify H. glycines effectors that interfere with plant immune responses. We used Nicotiana benthamiana plants infected by Pseudomonas syringae and Pseudomonas fluorescens strains. Using these pathosystems, we screened 51 H. glycines effectors to identify candidates that could inhibit effector-triggered immunity (ETI) and/or pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We identified three effectors as ETI suppressors and seven effectors as PTI suppressors. We also assessed expression modulation of plant immune marker genes as a function of these suppressors.  相似文献   

19.
Parasitism genes from phytoparasitic nematodes are thought to be essential for nematode invasion of the host plant, to help the nematode establish feeding sites, and to aid nematodes in the suppression of host plant defenses. One gene that may play several roles in nematode parasitism is chorismate mutase (CM). This secreted enzyme is produced in the nematode's esophageal glands and appears to function within the plant cell to manipulate the plant's shikimate pathway, which controls plant cell growth, development, structure, and pathogen defense. Using degenerate polymerase chain reaction primers, we amplified and cloned a chorismate mutase (Hg-cm-1) from Heterodera glycines, the soybean cyst nematode (SCN), and showed it had CM activity. RNA in situ hybridization of Hg-cm-1 cDNA to SCN sections confirms that it is specifically expressed in the nematodes' esophageal glands. DNA gel blots of genomic DNA isolated from SCN inbred lines that have differing virulence on SCN resistant soybean show Hg-cm-1 is a member of a polymorphic gene family. Some Hg-cm family members predominate in SCN inbred lines that are virulent on certain SCN resistant soybean cultivars. The same polymorphisms and correlation with virulence are seen in the Hg-cm-1 expressed in the SCN second-stage juveniles. Based on the enzymatic activity of Hg-cm-1 and the observation that different forms of the mutase are expressed in virulent nematodes, we hypothesize that the Hg-cm-1 is a virulence gene, some forms of which allow SCN to parasitize certain resistant soybean plants.  相似文献   

20.
While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号