首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A growing cell culture of Pseudomonas oleovorans was used to biotransform 1,7‐octadiene to 1,2‐epoxy‐7,8‐octene in a continuous‐flow bioreactor with an external membrane module. A dense silicone rubber membrane was used to contact an organic phase, containing both the reactant (1,7‐octadiene) and the growth substrate (heptane), with an aqueous biomedium phase containing the biocatalyst. Heptane and octadiene delivery to the aqueous phase, and epoxide extraction into the solvent, occurred by diffusion across the dense membrane under a concentration‐driving force. In addition, a liquid feed of heptane and octadiene was pumped directly into the bioreactor to increase the rate of delivery of these compounds to the aqueous phase. In this system 1,2‐epoxy‐7,8‐octene accumulated in a pure solvent phase, thus, product recovery problems associated with emulsion formation were avoided. Furthermore, no phase breakthrough of either liquid across the membrane was observed. In this system, the highest volumetric productivity obtained was 30 U.L−1, and this was achieved at a dilution rate of 0.07 h−1, 70 m2.m−3 of membrane area, and a steady‐state biomass concentration of 2.5 g.L−1. The system was stable for over 1250 h. Decreasing the dilution rate led to an increased biomass concentration, however, the specific activity was significantly reduced, and therefore, an optimal dilution rate was determined at 0.055 h−1. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 601–611, 1999.  相似文献   

2.
The modelling and optimization of a process for the production of the medium chain length polyhydroxyalkanoate (mcl-PHA) by the bacterium Pseudomonas putida KT2440 when fed a synthetic fatty acid mixture (SFAM) was investigated. Four novel feeding strategies were developed and tested using a constructed model and the optimum one implemented in further experiments. This strategy yielded a cell dry weight of 70.6 g l−1 in 25 h containing 38% PHA using SFAM at 5 l scale. A phosphate starvation strategy was implemented to improve PHA content, and this yielded 94.1 g l−1 in 25 h containing 56% PHA using SFAM at 5 l scale. The process was successfully operated at 20 l resulting in a cell dry weight of 91.2 g l−1 containing 65% PHA at the end of a 25-h incubation.  相似文献   

3.
The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO2) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L−1 d−1). The highest values of biomass concentration (1.98 g L−1), biomass productivity (131.8 mg L−1 d−1), carbon in biomass (47.9% w w−1), CO2 fixation rate (231.6 mg L−1 d−1), and CO2 use efficiency (80.5% w w−1) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w−1). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.  相似文献   

4.
Fat-containing animal by-product streams are locally available in large quantities. Depending on their quality, they can be inexpensive substrates for biotechnological processes. To accelerate industrial polyhydroxyalkanoate (PHA) bioplastic production, the development of efficient bioprocesses that are based on animal by-product streams is a promising approach to reduce overall production costs. However, the solid nature of animal by-product streams requires a tailor-made process development. In this study, a fat/protein-emulsion (FPE), which is a by-product stream from industrial-scale pharmaceutical heparin production and of which several hundred tons are available annually, was evaluated for PHA production with Ralstonia eutropha. The FPE was used as the sole source of carbon and nitrogen in shake flask and bioreactor cultivations. A tailored pneumatic feeding system was built for laboratory bioreactors to facilitate fed-batch cultivations with the solid FPE. The process yielded up to 51 g L−1 cell dry weight containing 71 wt% PHA with a space–time yield of 0.6 gPHA L−1 h−1 without using any carbon or nitrogen sources other than FPE. The presented approach highlights the potential of animal by-product stream valorization into PHA and contributes to a transition towards a circular bioeconomy.  相似文献   

5.
《Process Biochemistry》1999,34(4):341-347
The influence of initial glucose concentrations on the production of biomass and lutein by Chlorella protothecoides CS-41 was investigated in batch cultures using both shake flasks and fermentors. The maximum biomass concentration increased from 4·9 to 31·2 g litre−1 dry cells with an increase in initial glucose concentration from 10 to 80 g litre−1. An even higher initial glucose concentration (100 g litre−1) resulted in a lower biomass concentration, a lower specific growth rate, a lower growth yield coefficient and a considerably longer lag phase, which might be due to substrate inhibition. The initial glucose level also had a significant effect on the production of lutein. In a 3·7-litre fermentor an increase in lutein production from 19·39 to 76·56 mg litre−1 was obtained with an increase in initial glucose concentration from 10 to 40 g litre−1, within which range, lutein yield coefficient was constant (YItn=1·90±0·02 mg g−1). A simple substrate inhibition model was developed, which fitted the experimental data better than the classical Haldane model. A group of time-dependent kinetic models for algal cultivation in fermentors were also constructed, which were in good agreement with the experimental results and could be employed to predict the production of biomass and lutein, and the consumption of glucose in fermentor cultures.  相似文献   

6.
Heterotrophic production of lutein by selected Chlorella strains   总被引:12,自引:0,他引:12  
Seven Chlorella strains representing three species obtained from culture collections and research laboratories were screened for their potential of heterotrophic production of lutein on two different media (Basal and Kuhl) containing glucose. While both media supported good growth and lutein formation of the seven strains in darkness, higher biomass concentrations and lutein content were achieved on Basal medium. Chlorella protothecoides CS-41 was chosen from the seven strains for further investigation due to its higher productivities of both biomass and lutein. The maximal biomass concentration and lutein content of C. protothecoides cultivated heterotrophically with 9 g L-1 glucose in a 3.7-L fermentor were respectively 4.6 g dry cells L-1 and 4.60 mg lutein g-1 dry cells on Basal medium, and 4.0 g dry cells L-1 and 4.36 mg lutein g-1 dry cells on Kuhl medium. The heterotrophic cultivation process was scaled up successfully to 30 L using a fermentor, in which the Basal medium containing 36 g L-1 glucose was used; the maximal biomass concentration of 16.4 g dry cells L-1, specific growth rate of 0.92 d-1,lutein content of 4.85 mg lutein g-1 dry cells,growth yield of 0.47 g dry cells g-1 glucose and lutein yield of 1.93 mg lutein g-1 glucose were respectively achieved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Long‐term primary cultures of hepatocytes are essential for bioartificial liver (BAL) devices and to reduce and replace animal tests in lead candidate optimization in drug discovery and toxicology tests. The aim of this work was to improve bioreactor cultures of hepatocyte spheroids by adding a more physiological perfusion feeding regime to these bioreactor systems. A continuous perfusion feeding was compared with 50% medium replacement (routinely used for in vitro tests) at the same dilution rate, 0.125 day−1, for three operative weeks. Perfusion feeding led to a 10‐fold improvement in albumin synthesis in bioreactors containing non‐encapsulated hepatocyte spheroids; no significant improvement was observed in phase I drug metabolizing activity. When ultra high viscous alginate encapsulated spheroids were cultured in perfusion, urea synthesis, phase I drug metabolizing activity and oxygen consumption had a threefold improvement over the 50% medium replacement regime; albumin production was the same for both feeding regimes. The effective diffusion of albumin in the alginate capsules was 7.75.10−9 cm2 s−1 and no diffusion limitation for this protein was observed using these alginate capsules under our operational conditions. In conclusion, perfusion feeding coupled with alginate encapsulation of hepatocyte spheroids showed a synergistic effect with a threefold improvement in three independent liver‐specific functions of long‐term hepatocyte spheroid cultures. Biotechnol. Bioeng. 2011; 108:41–49. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Shake flask experiments showed that Pseudomonas oleovorans began to be growth inhibited at 4.65 g of sodium octanoate liter-1, with total inhibition at 6 g liter-1. In chemostat studies with 2 g of ammonium sulfate and 8 g of octanoate liter-1 in the feed, the maximum specific growth rate was 0.51 h-1, and the maximum specific rate of poly-β-hydroxyalkanoate (PHA) production was 0.074 g of PHA g of cellular protein-1 h-1 at a dilution rate (D) of 0.25 h-1. When the specific growth rate (μ) was <0.3 h-1, the PHA composition was relatively constant with a C4/C6/C8/C10 ratio of 0.1:1.7:20.7:1.0. At μ > 0.3 h-1, a decrease in the percentage of C8 with a concomitant increase in C10 monomers as μ increased was probably due to the effects of higher concentrations of unmetabolized octanoate in the fermentor. At D = 0.24 h-1 and an increasing carbon/nitrogen ratio, the percentage of PHA in the biomass was constant at 13% (wt/wt), indicating that nitrogen limitation did not affect PHA accumulation. Under carbon-limited conditions, the yield of biomass from substrate was 0.76 g of biomass g of octanoate-1 consumed, the yield of PHA was 0.085 g of PHA g of octanoate-1 used, and 7.9 g of octanoate was consumed for each gram of NH4+ supplied. The maintenance coefficient was 0.046 g of octanoate g of biomass-1 h-1. Replacement of sodium octanoate with octanoic acid appeared to result in transport-limited growth due to the water insolubility of the acid.  相似文献   

9.
Most of the crude glycerol produced globally is generated by biodiesel production, which makes this byproduct an environmental responsibility of the biofuel industries. Among the forms of this compound in use, microalgae cultivation is a promising alternative that may generate a reduction in crude glycerol treatment costs via using it as an organic, carbon-rich substrate in culture media. In this work, the influence of different concentrations of glycerol in the culture medium, the composition of fatty acids and proteins in Spirulina sp. LEB 18 biomass and their effect on its growth were investigated. The fatty acid profile of the biomass was altered, showing a 20% increase in the unsaturated concentration and a 60% reduction in the saturated concentration in the culture supplemented with 0.05 mol L−1 of glycerol compared to those in the control. The addition of the substrate stimulated an increase in its cellular concentration (3.00 g L−1, 0.05 mol L−1), productivity (0.72 g L−1 d−1, 0.05 mol L−1) and its protein production (69.78% w w−1, 0.05 mol L−1).  相似文献   

10.
1. While phosphorus (P) is often considered the most important growth limiting factor for plants in lakes, recent studies of shallow lakes indicate that nitrogen (N) may be of greater importance than realized hitherto and that submerged macrophytes may be lost when the N concentration exceeds a certain threshold, as long as the concentration of P is sufficiently high. 2. We studied the effects of different loadings of NH4‐N and NO3‐N on chlorophyll a and on a macrophyte tolerant of eutrophication, Vallisneria spinulosa (Hydrocharitaceae). In outdoor mesocosms we used water from a pond as control and created four levels of NH4‐N and NO3‐N (approximately 2.5, 5, 7.5 and 10 mg L−1) by dosing with NH4Cl and NaNO3, respectively. After the experiment, the plants were transferred back to a holding pond to study their recovery. In contrast to previous research, we used a low background concentration of phosphorus (TP 0.024 ± 0.003 mg L−1) so we could judge whether any effects of N were apparent when P is in short supply. 3. Chlorophyll a increased significantly with N dosing for both forms of N, but the increase was highest in the NH4‐N dosed mesocosms (maximum 58 μg L−1 versus 42 μg L−1 in the NO3‐N mesocosms), probably due to a higher total inorganic N concentration (part of the added ammonia was converted to nitrate during the experiment). 4. Although the number of ramets of V. spinulosa was not affected by the N treatment, the biomass increased up to concentrations of 7.5 mg L−1, while biomass at 10 mg L−1 remained at the control level for both N ions treatments. A similar pattern was apparent for the content of N and soluble sugar of the plant, while there were no differences in the plant P content among treatments. Five months after transplantation back to the pond no difference was found in the number of ramets or in biomass, except that the biomass of plants grown at 10 mg N L−1 during the experiment was greater than that in the control, while the N and P contents of plants were similar to those of the controls. 5. Nitrogen concentration had little influence on the growth of the eutrophication tolerant submerged macrophyte at moderately low concentrations of phosphorus. Moreover, the two N ions showed no toxic effects, suggesting that loss of macrophytes observed in other studies, run at higher phosphorus concentrations, was probably related to enhanced shading by periphyton and/or phytoplankton rather than to any toxic effects of N.  相似文献   

11.
Repeated-batch fermentation by a flocculating fusant, Saccharomyces cerevisiae HA 2, was done in a molasses medium that contained 20% (w/v) total sugar, at 30°C in an automatically controlled fermentor, and the effects of ethanol concentration on the specific growth rate and the specific production rate of ethanol were studied. Both the specific growth rate and the specific production rate of ethanol fell with increase of ethanol concentration, and there was a linear correlation between each rate and the concentration of thanol. The maximum specific growth rate (μmax) and the maximum specific production rate of ethanol (qmax) were 0.12 h−1 and 0.1 g ethanol/109 cells·h, respectively. The specific growth rate and the specific production rate of ethanol fell to zero at ethanol concentration of 89 g/l and 95 g/l, respectively. The number of viable cells, calculated from the linear inhibition equation, was 1.3 × 109 cells/ml for production of 85 g/l ethanol at a dilution rate (D1) of 0.2 h−1. Based on this estimation, a laboratory-scale continuous fermentation, using two fermentors in series, was done. In the second fermentor, 85 g/l ethanol was produced at a dilution rate (D1) of 0.2 h−1 by the active feedig of the fermented mash from the first fermentor into the second fermentor by pumping (hereafter called active feeding). To maintain the number of viable cells above 109 cells/ml in the second fermentor, a active feeding ratio of more than 23% was required. Under these conditions, 81 g/l ethanol was produced in the second fermentor at a dilution rate (Dt) of 0.25 h−1, and the high ethanol productivity of 20.3 g/l·h could be achieved. A bench-scale continuous fermentation, using two fermentors in series, with a active feeding ratio of 25% was done. An ethanol concentration of 84 g/l in the second fermentor at a dilution rate (Dt) of 0.25 h−1 was achieved, just as it was in the laboratory-scale fermentation test.  相似文献   

12.
Polyhydroxyalkanoate (PHA) production via mixed microbial cultures (MMCs) can potentially decrease process operational costs as compared to conventional pure culture techniques. However, the volumetric productivity of PHA by MMCs must be augmented to increase its cost competitiveness. For this purpose, a three‐stage bioreactor system was operated in this study, with (i) anaerobic fermentation of molasses, (ii) culture selection, and (iii) PHA accumulation and harvesting stages. In stage 2, bioreactor operation with pH control at 8 led to twice the biomass concentration (up to 8 g VSS L?1, where VSS is the volatile suspended solids) as compared to operation without pH control (maximum pH 9). No loss in the specific PHA storage efficiency was observed (PHA content up to 57.5% and PHA storage rate up to 0.27 Cmol PHA Cmol X?1 h?1, where X is the active biomass), thereby resulting in twice the volumetric PHA production rate. The limited biomass growth at the higher pH level was not due to nutrient limitation, but likely to a shift in the microbial community. It is hypothesized that the increased enrichment of Azoarcus at pH 8 led to higher PHA productivity. pH control in the culture selection stage can lead to enhanced PHA production from MMCs, improving the viability of the process.  相似文献   

13.
Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB/V)], by fed-batch culture of recombinantEscherichia coli harboring a plasmid containing theAlcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes, was examined in two pilot-scale fermentors with air supply only. In a 30 L fermentor having aK La value of 0.11 s−1, the final P(3HB/V) concentration and the P(3HB/V) content obtained were 29.6 g/L and 70.1 wt%, respectively, giving a productivity of 1.37 g P(3HB/V)/L-h. In a 300 L fermentor having aK La of 0.03 s−1, the P(3HB/V) concentration and the P(3HB/V) content were 20.4 g/L and 69 wt%, respectively, giving a productivity of 1.06 g P(3HB/V)/L-h. These results suggest that economical production of P(3HB/V) is possible by fed-batch culture of recombinantE. coli in a large-scale fermentor having lowK La value.  相似文献   

14.
The use of waste materials as feedstock for biosynthesis of valuable compounds has been an intensive area of research aiming at diminishing the consumption of non-renewable materials. In this study, P. putida KT2440 was employed as a cell factory for the bioconversion of waste vegetable oil into medium-chain-length Polyhydroxyalkanoates. In the presence of the waste oil this environmental strain is capable of secreting enzymes with lipase activities that enhance the bioavailability of this hydrophobic carbon substrate. It was also found that the oxygen transfer coefficient is directly correlated with high PHA levels in KT2440 cells when metabolizing the waste frying oil. By knocking out the tctA gene, encoding for an enzyme of the tripartite carboxylate transport system, an enhanced intracellular level of mcl-PHA was found in the engineered strain when grown on fatty acids. Batch bioreactors showed that the KT2440 strain produced 1.01 (g⋅L−1) of PHA whereas the engineered ΔtctA P. putida strain synthesized 1.91 (g⋅L−1) after 72 h cultivation on 20 (g⋅L−1) of waste oil, resulting in a nearly 2-fold increment in the PHA volumetric productivity. Taken together, this work contributes to accelerate the pace of development for efficient bioconversion of waste vegetable oils into sustainable biopolymers.  相似文献   

15.
The present study demonstrates a process engineering strategy to achieve high butanol titer and productivity from wild type Clostridium acetobutylicum MTCC 11274. In the first step, two different media were optimized with the objectives of maximizing the biomass and butanol productivity, respectively. In the next step, attributes of these two media compositions were integrated to design a two-stage fed-batch process which resulted in maximal butanol productivity of 0.55 g L−1 h−1 with titer of 13.1 g L−1. Further, two-stage fed-batch process along with combinatorial use of magnesium limitation and calcium supplementation resulted in the highest butanol titer and productivity of 16.5 g L−1 and 0.59 g L−1 h−1, respectively. Finally, integration of the process with gas stripping and modulation of feeding duration resulted in a cumulative butanol titer of 54.3 g L−1 and productivity of 0.58 g L−1 h−1. The strategy opens up possibility of developing a viable butanol bioprocess. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2771, 2019.  相似文献   

16.
In this study, secondary brewery wastewater (SBWW) supplemented with sugarcane molasses (SCM) was used for SBWW treatment with concomitant lipid and carotenoid production by the yeast Rhodosporidium toruloides NCYC 921. In order to improve the biomass production, ammonium sulfate, yeast extract and urea were tested as nitrogen sources. Urea was chosen as the best low-cost nitrogen source. A fed-batch cultivation was carried out with SBWW supplemented with 10 g L−1 of sugarcane molasses as carbon source, and 2 g L−1 of urea as nitrogen source. A maximum biomass concentration of 42.5 g L−1 was obtained at t = 126.5 h and the maximum biomass productivity was 0.55 g L−1 h−1 at t = 48.25 h. The maximum lipid content was 29.9 % w/w (DCW) at t = 94 h of cultivation and the maximum carotenoid content was 0.23 mg g−1 at 120 h of cultivation. Relatively to the SBWW treatment, after the batch phase, 45.8 % of total Kjeldahl nitrogen removal, 81.7 % of COD removal and 100 % of sugar consumption were observed. Flow cytometry analysis revealed that 27.27 % of the cells had injured membrane after the inoculation. This proportion was reduced to 10.37 % at the end of the cultivation, indicating that cells adapted to the growth conditions.  相似文献   

17.
Controlled nitrate feeding strategies for fed-batch cultures of microalgae were applied for the enhancement of lipid production and microalgal growth rates. In particular, in this study, the effect of nitrate feeding rates on lipid and biomass productivities in fed-batch cultures of Nannochloropsis gaditana were investigated using three feeding modes (i.e., pulse, continuous, and staged) and under two light variations on both lipid productivity and fatty acid compositions. Higher nitrate levels negatively affected lipid production in the study. Increasing the light intensity increased the lipid contents of the microalgae in all three fed-batch feeding modes. A maximum of 58.3% lipid- to dry weight ratio was achieved when using pulse-fed cultures at an illumination of 200 μmol photons m−2 s−1 and 10 mg/day of nitrate feeding. This condition also resulted in the maximum lipid productivity of 44.6 mg L−1 day−1. The fatty acid compositions of the lipids consisted predominantly of long-chain fatty acids (C:16 and C:18) and accounted for 70% of the overall fatty acid methyl esters. Pulse feeding mode was found to significantly enhance the biomass and lipid production. The other two feeding modes (continuous and staged) were not ideal for lipid and biomass production. This study demonstrates the applicability of pulse feeding strategies in fed-batch cultures as an appropriate cultivation strategy that can increase both lipid accumulation and biomass production.  相似文献   

18.

The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L−1 to 66.9 mg L−1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L−1 and 18.9 mg LAS L−1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L−1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.

  相似文献   

19.
1. We investigated the effect of trophic status on the organic matter budget in freshwater ecosystems. During leaf litter breakdown, the relative contribution of the functional groups and the quantity/quality of organic matter available to higher trophic levels are expected to be modified by the anthropogenic release of nutrients. 2. Carbon budgets were established during the breakdown of alder leaves enclosed in coarse mesh bags and submerged in six streams: two oligotrophic, one mesotrophic, two eutrophic and one hypertrophic streams. Nitrate concentrations were 4.5–6.7 mg L−1 and the trophic status of each stream was defined by the soluble reactive phosphorus concentration ranging from 3.4 (oligotrophic) to 89 μg L−1 (hypertrophic). An ammonium gradient paralleled the phosphate gradient with mean concentrations ranging from 1.4 to 560 μg L−1 NH4‐N. The corresponding unionised ammonia concentrations ranged from 0.08 to 19 μg L−1 NH3‐N over the six streams. 3. The dominant shredder taxa were different in the oligo‐, meso‐ and eutrophic streams. No shredders were observed in the hypertrophic stream. These changes may be accounted for by the gradual increase in the concentration of ammonia over the six streams. The shredder biomass dramatically decreased in eu‐ and hypertrophic streams compared with oligo‐ and mesotrophic. 4. Fungal biomass increased threefold from the most oligotrophic to the less eutrophic stream and decreased in the most eutrophic and the hypertrophic. Bacterial biomass increased twofold from the most oligotrophic to the hypertrophic stream. Along the trophic gradient, the microbial CO2 production followed that of microbial biomass whereas the microbial fine particulate organic matter and net dissolved organic carbon (DOC) did not consistently vary. These results indicate that the microorganisms utilised the substrate and the DOC differently in streams of various trophic statuses. 5. In streams receiving various anthropogenic inputs, the relative contribution of the functional groups to leaf mass loss varied extensively as a result of stimulation and the deleterious effects of dissolved inorganic compounds. The quality/quantity of the organic matter produced by microorganisms slightly varied, as they use DOC from stream water instead of the substrate they decompose in streams of higher trophic status.  相似文献   

20.
A five carbon linear chain diamine, cadaverine (1,5‐diaminopentane), is an important platform chemical having many applications in chemical industry. Bio‐based production of cadaverine from renewable feedstock is a promising and sustainable alternative to the petroleum‐based chemical synthesis. Here, we report development of a metabolically engineered strain of Escherichia coli that overproduces cadaverine in glucose mineral salts medium. First, cadaverine degradation and utilization pathways were inactivated. Next, L ‐lysine decarboxylase, which converts L ‐lysine directly to cadaverine, was amplified by plasmid‐based overexpression of the cadA gene under the strong tac promoter. Furthermore, the L ‐lysine biosynthetic pool was increased by the overexpression of the dapA gene encoding dihydrodipicolinate synthase through the replacement of the native promoter with the strong trc promoter in the genome. The final engineered strain was able to produce 9.61 g L−1 of cadaverine with a productivity of 0.32 g L−1 h−1 by fed‐batch cultivation. The strategy reported here should be useful for the bio‐based production of cadaverine from renewable resources. Biotechnol. Bioeng. 2011; 108:93–103. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号