首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 813 毫秒
1.
This study examined the impact of fouling with yeast homogenate on capacity and breakthrough performance of an ion exchange packed bed column. Column performance was assessed by analysis of breakthrough curves obtained with BSA as a test protein. The overall impact of fouling on breakthrough performance depended heavily on the level of clarification of the feed stream. Challenging the column with particulate-free homogenate caused no change in column performance. Loading successive small volumes of poorly clarified homogenate, interspersed with frequent column salt washes, did not alter significantly the column capacity. By contrast, when the column was challenged with an equivalent cumulative volume of poorly clarified homogenate, dynamic binding capacity decreased significantly and changes in breakthrough curves suggested increased intraparticle and external mass transfer limitations. These changes were ascribed to deposition of solid particulates in void spaces in the bed and colloidal contaminants in the bead pores.  相似文献   

2.
Experimental data are given for the solid pressure distributions in chromatography columns of various column aspect ratios packed with four types of agarose-based resin. The loss of column wall support at large scales can result in unexpectedly high pressures caused by the compression of the matrix via drag forces exerted by fluid flow through the bed. The need for an accurate model to predict flow conditions at increasing scale is essential for the scaling-up of chromatographic processes and for avoiding bed compression during operation. Several studies have generated correlations that allow for the prediction of column pressure drops, but they either are mathematically complex, which impairs their practical use, or require a large number of experiments to be performed before they can be used. In this study an empirical correlation was developed based on a previously proposed model, which links the critical velocity of operation of a chromatographic system (microcrit), to the gravity-settled bed height (L0), the column diameter (D), the feed viscosity (micro), and the compressibility of the chromatographic media used (micro 10%). The methodology developed in this study is straightforward to use and significantly reduces the burden of preceding laboratory-scale experimentation. The approach can be used to predict the critical velocity of any chromatographic system and will be useful in the development of chromatographic operations and for column sizing.  相似文献   

3.
An affinity chromatography step was developed for purification of recombinant B-Domain Deleted Factor VIII (BDDrFVIII) using a peptide ligand selected from a phage display library. The peptide library had variegated residues, contained both within a disulfide bond-constrained ring and flanking the ring. The peptide ligand binds to BDDrFVIII with a dissociation constant of approximately 1 microM both in free solution and when immobilized on a chromatographic resin. The peptide is chemically synthesized and the affinity resin is produced by coupling the peptide to an agarose matrix preactivated with N-hydroxysuccinimide. Coupling conditions were optimized to give consistent and complete ligand incorporation and validated with a robustness study that tested various combinations of processing limits. The peptide affinity chromatographic operation employs conditions very similar to an immunoaffinity chromatography step currently in use for BDDrFVIII manufacture. The process step provides excellent recovery of BDDrFVIII from a complex feed stream and reduces host cell protein and DNA by 3-4 logs. Process validation studies established resin reuse over 26 cycles without changes in product recovery or purity. A robustness study using a factorial design was performed and showed that the step was insensitive to small changes in process conditions that represent normal variation in commercial manufacturing. A scaled-down model of the process step was qualified and used for virus removal studies. A validation package addressing the safety of the leached peptide included leaching rate measurements under process conditions, testing of peptide levels in product pools, demonstration of robust removal downstream by spiking studies, end product testing, and toxicological profiling of the ligand. The peptide ligand affinity step was scaled up for cGMP production of BDDrFVIII for clinical trials.  相似文献   

4.
Expanded bed adsorption chromatography (EBAC) is a single pass operation that has been used as primary capture step in various protein purifications. The most common problem in EBAC is often associated with successful formation of a stable fluidized bed during the absorption stage, which is critically dependent on parameters such as liquid velocity, bed height, particle (adsorbent) size and density as well as design of column and type of flow distributor. In this study, residence time distribution (RTD) test using acetone as non-binding tracer acetone was performed to evaluate liquid dispersion characteristics of the EBAC system. A high B(o) number was obtained indicating the liquid dispersion in the system employed is very minimal and the liquid flow within the bed was close to plug flow, which mimics a packed bed chromatography system. Evaluation on the effect of flow velocities and bed height on the performance of Streamline DEAE using feedstock containing heat-treated crude Escherichia coli homogenate of different biomass concentrations was carried out in this study. The advantages and disadvantages as well as the problems encountered during recovery of HBcAg with aforementioned parameters are also discussed in this paper.  相似文献   

5.
This article discusses the preparation of novel Paper-PEG interpenetrating polymer network-based membranes as inexpensive alternative to currently available adsorptive membranes. The Paper-PEG membranes were developed for carrying out hydrophobic interaction membrane chromatography (HIMC). PEG is normally very hydrophilic but can undergo phase separation and become hydrophobic in the presence of high antichaotropic salt concentrations. Two variants of the Paper-PEG membranes, Paper-PEG 1 and Paper-PEG 2 were prepared by grafting different amounts of the polymer on filter paper and these were tested for their hydraulic properties and antibody binding capacity. The better of the two membranes (Paper-PEG 1) was then used for purifying the monoclonal antibody hIgG1-CD4 from simulated mammalian cell culture supernatant. The processing conditions required for purification were systematically optimized. The dynamic antibody binding capacity of the Paper-PEG 1 membrane was about 9 mg/mL of bed volume. A single step membrane chromatographic process using Paper-PEG 1 membrane gave high monoclonal antibody purity and recovery. The hydraulic permeability of the paper-based membrane was high and was maintained even after many runs, indicating that membrane fouling was negligible and the membrane was largely incompressible.  相似文献   

6.
Efficient and economic recovery of immunoglobulins (Igs) from complex biological fluids such as serum, cell culture supernatant or fermentation cell lysate or supernatant, represents a substantial challenge in biotechnology. Methods such as protein A affinity chromatography and anion exchange chromatography are limited by cost and selectivity, respectively, while membrane chromatography is limited by low adsorptive area, flow distribution problems and scale-up difficulties. By combining the traditional salt-assisted precipitation process for selective removal of Igs from serum followed by constant-permeate flux membrane microfiltration for low fouling, we demonstrate an exciting new, efficient and economic hybrid method. The high selectivity of an ammonium sulfate-induced precipitation step was used to precipitate the Igs leaving the major undesirable impurity, the bovine serum albumin (BSA), in solution. Crossflow membrane microfiltration in diafiltration mode was then employed to retain the precipitate, while using axial flow rates to optimize removal of residual soluble BSA to the permeate. The selectivity between immunoglobulin G (IgG) and BSA obtained from the precipitation step was approximately 36, with 97% removal of the BSA with diafiltration in 5 diavolumes with resulting purity of the IgG of approximately 93% after the membrane microfiltration step. Complete resolubilization of the IgG was obtained without any aggregation at the concentrations of ammonium sulfate employed in this work. Further, membrane pore size and axial Reynolds number (recirculation rate) were shown to be important for minimizing fouling and loss of protein precipitate.  相似文献   

7.
The removal of polymeric proteins from their monomers is a frequently encountered separation task, especially in the polishing step of therapeutic proteins. Continuous separation of protein polymers from monomers by annular chromatography using size exclusion chromatography has been studied regarding the resolution, recovery, fouling, and productivity and has been compared to conventional chromatography. An IgG preparation rich in aggregates was used as a model protein mixture. Under conditions that maximized the throughput, the polymers could be separated from the monomers, but baseline separation could not be achieved. Baseline separation was also not possible in batch mode using equivalent conditions, which was also confirmed by computer simulation. For separation of the aggregates from the product the entire available separation space (360 degrees ) was indispensable. Therefore only cyclic, discontinuous regeneration could be carried out. Loading was identified as a critical step, since the concentrated protein solution evaded into the headspace instead of migrating into the gel where viscous fingering often occurs in conventional chromatography. The productivity of annular chromatography was two times higher than that of the conventional batch chromatography, and the buffer consumption was reduced to half the conventional value. These two benefits are especially important for protein separation processes that suffer from low loadability, such as size exclusion chromatography. We have demonstrated that size exclusion can be performed on an industrial scale when it is run continuously with the aid of a pressurized annular chromatograph.  相似文献   

8.
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015  相似文献   

9.
Expanded bed absorption chromatography (EBA) was used to improve and simplify the purification of several wheat recombinant proteins. Binding and elution conditions were set to allow the purification of the over expressed protein in a single step. In comparison with our previous multi step protocol, same purity was obtained while EBA required less time (one day instead of five) and gave a higher yield (63% instead of 10%). This new procedure was then used for the successful purification of five other wheat ns-LTP. Despite their important polymorphism (identity from 44 to 97 %-pHi from 8 to 10), the EBA protocol allowed their purification in a single step.  相似文献   

10.
In this paper a large and scaleable method for purification of C-phycocyanin (C-PC) from the cyanobacteria Synechocystis aquatilis has been developed. Phycobiliproteins are extracted from the cells by osmotic shock and separated by passing the centrifuged cell suspension through an expanded bed adsorption chromatography (EBAC) column using Streamline-DEAE as adsorbent. The eluted C-PC rich solution is finally purified by packed-bed chromatography using DEAE-cellulose. Optimal extraction is achieved using phosphate 0.05 M buffer pH 7.0 twice. The operation of EBAC is optimized on a small scale using a column of 15 mm internal diameter (I.D.). The optimal conditions are a sample load of 4.9 mg C-PC/mL adsorbent, an expanded bed volume twice the settled bed volume and a sample viscosity of 1.020 mP. The EBAC process is then scaled up by increasing the column I.D. (15, 25, 40, 60 and 90 mm) and the success of the scale-up process is verified by determining the protein breakthrough capacity and product recovery. The yield of the EBAC step is in the range of 90-93% for every column diameter. To obtain pure C-PC, conventional ion-exchange chromatography with DEAE-cellulose is utilized and a yield of 74% is obtained. The overall yield of the process, comprising all steps, is 69%. The purification steps are monitored using SDS-PAGE and the purity of recovered C-PC is confirmed by absorption and emission spectroscopy and RP-HPLC. Results show that EBAC method is a scalable technology that allows large quantities of C-PC to be obtained without product loss, maintaining a high protein recovery while reducing both processing cost and time.  相似文献   

11.
Simulation and optimization of continuous affinity recycle extraction (CARE), a protein purification unit operation based on protein adsorption to solid phase adsorbents, is described in this paper. Rather than packing conventional adsorbent particles in a fixed bed (column), solid/liquid contact is carried out in well-mixed reactors. Continuous operation is achieved by recirculation of the adsorbent particles between two or more contactors. The feasibility of this purification scheme was established with the recovery and isolation of the enzyme beta-galactosidase from E.coli, using the affinity support PABTG/Agarose. A mathematical model describing system performance was developed. The mathematical model was used to optimize several facets of the system design and operation. The base two-stage contractor design was modified by the addition of an intermediate wash stage as well as the incorporation of multiple adsorption stages. These design modifications serve to increase purification, concentration and recovery while utilizing the same amount of adsorbent. The methodology for defining and optimizing objective functions was developed and experimentally validated. Finally, optimum system start-up protocols, minimizing the time required to reach steady-state operation, were developed and experimentally validated. The impact of early introduction of adsorptive purification in a downstream processing sequence, with CARE, was evaluated and is described. Through the early introduction of a highly specific adsorptive step, significant purification is achieved simultaneously with clarification and concentration. In addition, purification performance in CARE was contrasted with that achievable in conventional column chromatography.  相似文献   

12.
Improvements in upstream production have boosted productivity in the biomanufacturing industry, but this is leading to bottlenecks in downstream processing as current technology platforms reach their limits of throughput and scalability. Although chromatography remains an indispensible component of downstream processing due to its simplicity and high resolving power (The Good), there is virtually no economy of scale effect so more product translates almost linearly into greater production costs. Bind-and-elute processes (such as the initial capture step in antibody manufacturing) are volume-driven and therefore have knock-on effects that impact on the entire production facility since the space required for preparation, storage, and cleaning steps has to be similarly adapted (The Bad). During long-term operations with multiple cycles, thorough cleaning is necessary to prevent progressive fouling and microbial contamination (The Ugly). Innovative solutions are required, which may include revisiting simpler and less expensive separation technologies, the use of disposable modules, and the integration of improved processes that are scalable to cope with increased demands. Among the alternatives that have been put forward, membrane adsorbers are beginning to make a real impact on the industry, particularly for flow-through applications such as polishing and viral clearance.  相似文献   

13.
Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5 m/s and fed with a gelatine–starch–ethanol mixture. A significant fraction of acidogenic biomass developed during reactor operation, which fully determined the sludge rheology, and influenced the particle size distribution. As a result, flux levels of only 6.5 l/m2 h were achieved, at a liquid superficial velocity of 1.5 m/s. Even though the soluble microbial products levels in the AMBR were as high as 14 g COD/l, the observed hydraulic flux was not limited by irreversible pore fouling, but by reversible cake layer formation. Propionate oxidation was the limiting step for the applied organic loading rate. The assessed specific methanogenic activity (SMA) with propionate as substrate was, however, similar to the values found by others during thermophilic treatment of non or partially acidified substrates in granular sludge bed reactors, indicating an appropriate level of the propionate oxidation capacity.  相似文献   

14.
The use of expanded beds of STREAMLINE ion exchange adsorbents for the direct extraction of an intracellular enzyme glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast cell homogenates has been investigated. It has been demonstrated that such crude feedstocks can be applied to the bed without prior clarification steps. The purification of G6PDH from an unclarified yeast homogenate was chosen as a model system containing the typical features of a direct extraction technique. Optimal conditions for the purification were determined in small scale, packed bed experiments conducted with clarified homogenates. Results from these experiments were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 EBA apparatus. The use of an on-line rotameter for measuring and controlling the height of the expanded bed when operated in highly turbid feedstocks was demonstrated. STREAMLINE DEAE has been shown to be successful in achieving isolation of G6PDH from an unclarified homogenate with a purification factor of 12 and yield of 98% in a single step process. This ion exchange adsorbent is readily cleaned using simple cleaning-in-place procedures without affecting either adsorption or the bed expansion properties of the adsorbent after many cycles of operation. The ability of combining clarification, capture, and purification in a single step will greatly simplify downstream processing flowsheets and reduce the costs of protein purification. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Simulation may be used as a powerful tool for accelerating bioprocess design. This paper demonstrates the use of simulations in exploring the nature and impact of the interactions that exist in a typical bioprocess for the recovery of an intracellular protein. The study shows that an integrated approach to design must be adopted in order to achieve acceptable process designs. Data from a fed-batch fermentation, with verified models for cell harvesting, cell disruption and cell debris removal have been integrated to demonstrate the consequence of process design and operating decisions on the resulting process performance. The trade-offs between product recovery and the extent of cell debris removal for a range of operating conditions have been represented through a series of windows of operation which show how process conditions must be altered in order for given process performance levels to be realised. The capacity to account for process performance including the impact of interactions is seen as a pre-requisite for rigorous bioprocess sequence design and optimisation.  相似文献   

16.

Nontoxic, low surface free energy silicone coatings having reduced biofouling adhesion strength have been developed as an alternative to antifouling paints. Silicone coatings permit macrofouling to adhere; however, fouling can be removed easily by water pressure or light scrubbing. One of the current methods used to evaluate the performance of non‐toxic silicone fouling‐release coatings relies heavily on fouling coverage. The organismal community structure as well as total coverage can affect the ease of fouling removal from these coatings. This paper explores fouling coverage and organismal adhesion over time. Long‐term fouling coverage data were collected at four sites (in Massachusetts, Hawaii and Florida) using static immersion panels coated with silicone and oil‐amended silicone systems. Inter‐site differences in fouling coverage and community structure were observed for each coating. Intra‐site variation and temporal change in coverage of fouling was minimal, regardless of coating formulation. The extent of coverage was affected by the duration of immersion and the local environmental conditions; these factors may also have an impact on the foul‐release capability of the silicone coatings. Organismal adhesion data was collected in Hawaii and Florida. These adhesion measurements were used as a tool to discriminate and rank fouling release coatings.  相似文献   

17.
C-phycocyanin was purified on a large scale by a combination of expanded bed adsorption, anion-exchange chromatography and hydroxyapatite chromatography from inferior Spirulina platensis that cannot be used for human consumption. First, phycobiliproteins were extracted by a simple, scaleable method and then were recovered by Phenyl-Sepharose chromatography in an expanded bed column. The purity (the A(620)/A(280) ratio) of C-phycocyanin isolated with STREAMLINE column was up to 2.87, and the yield was as high as 31 mg/g of dried S. platensis. After the first step, we used conventional anion-exchange chromatography for the purification steps, with a yield of 7.7 mg/g of dried S. platensis at a purity greater than 3.2 and with an A(620)/A(650) index higher than 5.0. The fractions from anion-exchange chromatography with a level of purity that did not conform to the above standard were subjected to hydroxyapatite chromatography, with a C-PC yield of 4.45 mg/g of dried S. platensis with a purity greater than 3.2. The protein from both purification methods showed one absolute absorption peak at 620 nm and a fluorescence maximum at 650 nm, which is consistent with the typical spectrum of C-phycocyanin. SDS-PAGE gave two bands corresponding to 21 and 18 kDa. In-gel digestion and LC-ESI-MS showed that the protein is C-phycocyanin.  相似文献   

18.
A comparison between expanded bed adsorption and conventional packed bed Protein A Fast Flow to purify the anti-rHBsAg mAbs from feedstock is presented in this work. Direct capture by STREAMLINE expanded bed adsorption chromatography resulted in 92% product recovery and sevenfold more concentrated product with similar purity levels compared to that obtained by the standard packed method. The process time and buffer consumption were reduced in the expanded bed adsorption method not only with the binding-elution conditions but also with the use of NaOH during the cleaning-in-place step. The latter is the most widely accepted agent in downstream processing, being a cost effective technique that provides not only efficient cleaning but also sanitizes complete column systems and destroys pirogens.  相似文献   

19.
Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non‐woven fiber structure with diameters in the sub‐micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non‐optimized DEAE‐nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10‐fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 µm filtered yeast homogenate) and harsh cleaning‐in‐place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. Biotechnol. Bioeng. 2013; 110: 1119–1128. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Cross-flow membrane microfiltration was used under optimal conditions to recover met-growth hormone inclusion bodies (IBs) from Escherichia coli cell lysate by removal of the host-cell (bacterial) proteins (HCP) under minimal fouling conditions. This is the first step of a two-step process in which the goal was to isolate IBs at high yield from the HCP. These undesired soluble HCP were removed by passing them through the membrane while retaining the insolubles, including the aggregated IBs. Experiments were conducted at constant permeate flux with flat-sheet membranes of different pore sizes and chemistry, with feeds of varying pH and ionic strengths to determine the optimum combination for HCP removal. Diafiltration, the washing away of impurities with protein-free buffer, was then employed to ensure removal of the host cell proteins at the optimum conditions. About 90% removal of the HCP was obtained in about 5 diavolumes, maintaining high protein transmission and low membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号