首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ultra‐weak chemiluminescence (CL) from the reaction of iodide and KMnO4 was strongly enhanced by carbon nanodots (CNDs) in an acidic medium. The CL intensity was directly proportional to the concentration of iodide in the solution. Therefore, a flow‐injection CL system with high sensitivity, selectivity and reproducibility is proposed for the determination of iodide. The proposed method exhibited advantages over a linear range of 3.0 × 10?6–1.0 × 10?4 mol/L and had a detection limit of 3.5 × 10?7 mol/L. The method was successfully applied to the evaluation of iodide in food samples with recoveries of between 96 and 103%. The relative standard deviations were 2.1 and 4.1% for intra‐ and inter‐assay precision, respectively.  相似文献   

2.
In this article, a DPPH·–luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·–luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·–luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10?6 mol/L DPPH · and 1.0 × 10?4 mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5–2000 and 40–3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N  = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples.  相似文献   

3.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid and sensitive flow injection chemiluminescence (FI–CL) method is described for the determination of 2‐methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide–calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10‐8 to 1.0 × 10‐6 mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10‐9 mol/L. The relative standard deviation (RSD) for 5.0 × 10‐7 mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and sensitive flow injection chemiluminescence (FI‐CL) method was developed for the determination of naphazoline hydrochloride (NPZ). The method is based on the enhancing effect of NPZ on the weak CL signal from the reaction of KIO4 with H2O2. Experimental parameters that affected the CL signal, including the pH of the KIO4 solution, concentrations of KIO4, H2O2 and disodium‐EDTA and flow rate were optimized. Under the optimum conditions, the increment of CL intensity was linearly proportional to the concentration of NPZ in the range 5.0 × 10?6 to 70 × 10?6 mol/L. The detection limit was 1.0 × 10?6 mol/L and the relative standard deviation for 50 × 10?6 mol/L NPZ solution was 2.8% (n = 11). In addition, a high throughput of 120 samples/h was achieved. The utility of this method was demonstrated by determining NPZ in pharmaceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

8.
A new chemiluminescence (CL) reaction between luminol and diperiodatoargentate {K2 [Ag (H2IO6) (OH) 2]} was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate. Therefore a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the UV absorption spectra of some related substance. The concentration range of linear response was 5.1 × 10?8 to 5.1 × 10?6 mol L?1 with a detection limit of 1.9 × 10?8 mol L?1 (3σ). The proposed method had good reproducibility with a relative standard deviation of 2.8% (n = 7) for 5.1 × 10?7 mol L?1 of amikacin sulfate. It was successfully applied to determine amikacin sulfate in serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Colloidals solution of Fe3O4 magnetic nanoparticles (MNPs), capped with β‐cyclodextrins (β‐CD) as inclusion complexes, were found to enhance the chemiluminescence (CL) intensity of the luminol–diperiodatoargentate(III) (DPA) system. On injection of cysteine into the luminol–DPA–β‐CD–Fe3O4 MNPs inclusion complexes system, the CL intensity is strongly enhanced. The enhanced CL signal is ascribed to the catalytic effect of Fe3O4 MNPs capped with β‐CD, which is assumed to stabilize the CL intermediate. Based on these findings, a rapid and sensitive assay was developed for the determination of cysteine in human serum. The effects of analytical variables on the CL signal were studied and optimized. Under the optimum conditions, the CL intensity was directly proportional to the concentration of cysteine in the range 8.0 × 10–9–1.0 × 10–6 mol/L. The detection limit was 2.8 × 10–9 mol/L (3 Sb/m) and the relative standard deviation (RSD) for 10 replicate determinations of 1.0 × 10–7 mol/L cysteine was 3.5%. The proposed method was applied to the sensitive determination of cysteine in human serum samples, and compared with the Ellman method with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This method is based on the enhancing effect of codeine (COD) and paracetamol (PAR) on the chemiluminescence (CL) reaction of Ru(phen)32+ with Ce(IV). In the batch mode, COD gives a relatively sharp peak with the highest CL intensity at 4.0 s, whereas the maximum CL intensity of the PAR appears at ~60 s after injection of Ce(IV) solution. Whole CL time profiles allowed use of the time‐resolved CL data in combination with multiway calibration techniques, as multiway partial least squares (N‐PLS), for the quantitative determination of both COD and PAR in binary mixtures. In this work, we found that the impact of Ce(IV) concentration on the CL intensity was different for COD and PAR. Therefore, a Ce(IV) concentration mode was added to the time and sample modes to obtain 3D data. The percent relative standard deviation (%RSD) values for 10 determinations of 1.0 × 10?5 mol/L of COD and 1.0 × 10?4 mol/L of PAR were 6.1% and 8.7%, respectively. The limit of detection (LOD) values (S/N = 3) were 0.9 × 10?8 mol/L and 1.0 × 10?6 mol/L for COD and PAR, respectively. The proposed method was successfully applied to the determination of PAR and COD in commercial pharmaceutical formulations. Acceptable recoveries (90–110%) were obtained for the quantification of these drugs in the real samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The oxidation reaction of H2O2 with KIO4 can produce chemiluminescence (CL) in the presence of the surfactant Tween40 and the CL intensity of the CL system KIO4–H2O2–Tween40 can be strikingly enhanced after injection of tannic acid. On this basis, a flow injection method with CL detection was established for the determination of tannic acid. The method is simple, rapid and effective to determine tannic acid in the range of 7.0 × 10?9 to 1.0 × 10?5 mol/L with a determination limit of 2.3 × 10?9 mol/L. The relative standard deviation is 2.6% for the determination of 5.0 × 10?6 mol/L tannic acid (n = 11). The method has been applied to determine the content of tannic acid in industrial wastewater with satisfactory results. It is believed that the CL reaction formed singlet oxygen 1O2* and the emission was from an excited oxygen molecular pair O2(1Δg)O2(1?g) in the KIO4–H2O2–Tween40 reaction. Tween40 played an important role in enhancing stabilization of the excited oxygen molecular pair O2(1Δg)O2(1?g) and in increasing CL intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A novel flow injection chemiluminescence (CL) method for the determination of rutin was reported. The proposed method was based on the enhanced effect of rutin on the chemiluminescence intensity of luminol and potassium hexacyanoferrate(III) reaction in NaOH medium. The variables of reaction system, such as luminol concentration, potassium hexacyanoferrate(III) concentration and NaOH concentration, were optimized with the aid of response surface methodology. For the responses prediction, a second‐order polynomial model (SOPM) was applied. The optimal conditions for determination of rutin estimated by the model equation were as follows: NaOH concentration of 0.13 mol/L luminol concentration of 0.94 × 10?6 mol/L, and K3Fe(CN)6 concentration of 1.09 × 10?4 mol/L. The theoretical increased ratio of CL intensity (IRI) predicted and actual IRI for 0.05 mg/L rutin under the above conditions were 99.40 and 99.74%, respectively. The SOPM model proved to be powerful for navigating the design space. Under the above optimum conditions, the increased IRI was linearly related to the concentration of rutin in the range from 0.008 to 0.100 mg/L with the regression equation IRI = 1948.20c + 5.24 (r = 0.9994) and in the range from 0.100 to 1.000 mg/L with the regression equation IRI = 1362.50 c + 61.94 (r = 0.9996). The detection limit (3σ) was of 1.95 × 10?3 mg/L. The sampling frequency of this method was 72/h. The method was used directly to determine rutin in tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis–chemiluminescence (CE‐CL) detection method for phenols using a hemin–luminol–hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br? and F? could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE‐CL detection system because of the self‐polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin–luminol afforded a stable CE‐CL baseline. The indirect CE‐CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10?8 mol/L (o‐sec‐butylphenol), 4.9 × 10?8 mol/L (o‐cresol), 5.4 × 10?8 mol/L (m‐cresol), 5.3 × 10?8 mol/L (2,4‐dichlorophenol) and 7.1 × 10?8 mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Qiyong Zhu 《Luminescence》2009,24(4):250-254
Based on the inhibition effect of rutin on the luminol–hydrogen peroxide chemiluminescence (CL) system catalyzed by tetrasulfonated colbalt phthalocyanine (CoTSPc), a sensitive flow‐injection CL method has been developed for the determination of rutin. The CL reaction mechanism was carefully investigated by examining CL emission spectra, UV–visible spectra and variation of reaction conditions. It was found that there existed a linear relationship between CL intensity and the concentration of rutin in the range of 8.0 × 10?9 to 1.0 × 10?6 mol L?1, and the detection limit is 3.8 × 10?9 mol L?1. This proposed method is sensitive, convenient and simple, and has been applied to the determination of rutin in commercial rutin tablets with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
CdS nanoparticles (CdS NPs) of different sizes were synthesized by the citrate reduction method. It was found that CdS NPs could enhance the chemiluminescence (CL) of the luminol‐potassium ferricyanide system and baicalin could inhibit CdS NPs‐enhanced luminol‐potassium ferricyanide CL signals in alkaline solution. Based on this inhibition, a flow‐injection CL method was established for determination of baicalin in pharmaceutical preparations and human urine samples. Under optimized conditions, the linear range for determination of baicalin was 5.0 x 10?6 to 1.0 x 10?3 g/L. The detection limit at a signal‐to‐noise ratio of 3 was 1.7 x 10 ?6 g/L. CL spectra, UV‐visible spectra and transmission electron microscopy (TEM) were used to investigate the CL mechanism. The method described is simple, selective and obviates the need of extensive sample pretreatment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a sensitive and simple flow‐injection chemiluminescence (CL) method was developed for the quantitative analysis of haemoglobin. The method is based on the ability of haemoglobin to enhance the CL signal generated by a H2O2–K4Fe(CN)6–fluorescein alkaline system enhanced by CdTe quantum dots. Under the optimized conditions, haemoglobin can be detected in concentration range 7.35 × 10–9–2.5 × 10–6 mol/L, with a detection limit (3σ) of 1.8 × 10–9 mol/L and a relative standard deviation (RSD; for 5 × 10–7 mol/L haemoglobin) of 2.06% (n = 11). The present CL method was successfully applied for the determination of haemoglobin in three kinds of blood samples taken from an infant, an adult man, an adult woman and two reference samples. Compared with previous reports, the CL method described in this work is simple and rapid, with high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号