首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affinity chromatography: purification of bovine trypsin and thrombin   总被引:5,自引:0,他引:5  
Bovine trypsin has been purified by affinity chromatography on agarose beads containing covalently bound p-aminophenylguanidine, p-aminobenzamidine, or m-aminobenzamidine. Bovine thrombin was purified on a m-aminobenzamidine-agarose column containing a high concentration of the inhibitor. The values of the inhibition constant, Ki, for these inhibitors were determined for both enzymes and found to be 5–10 times poorer for thrombin than for trypsin. Only those benzamidines with low Ki values and coupled in high concentration to the agarose matrix were satisfactory for thrombin purification. Affinity-purified trypsin and thrombin were both greater than 90% active as measured by active site titration.  相似文献   

2.
The benzamidine moiety, a well-known arginine mimetic, has been introduced in a variety of ligands, including peptidomimetic inhibitors of trypsin-like serine proteases. According to their primary substrate specificity, the benzamidine residue interacts with the negatively charged aspartate at the bottom of the S1 pocket of such enzymes. Six series of benzamidine derivatives (173) were synthesized and evaluated as inhibitors of two prototype serine proteases, that is, bovine trypsin and human thrombin. As a further target, human matriptase-2, a recently discovered type II transmembrane serine protease, was investigated. Matriptase-2 represents an important regulatory protease in iron homeostasis by down-regulation of the hepcidin expression. Compounds 173 were designed to contain a fixed sulfamoyl benzamidine moiety as arginine mimetic and a linker-connected additional substructure, such as a tert-butyl ester, carboxylate or second benzamidine functionality. A systematic mapping approach was performed with these inhibitors to scan the active site of the three target proteases. In particular, bisbenzamidines, able to interact with both the S1 and S3/S4 binding sites, showed notable affinity. In branched bisbenzamidines 6673 containing a third hydrophobic residue, opposite effects of the stereochemistry on trypsin and thrombin inhibition were observed.  相似文献   

3.
Human plasma kallikrein. Purification and preliminary characterization   总被引:1,自引:0,他引:1  
A method is described for the convenient purification of the protease plasma kallikrein from human Cohn fraction IV-1. The enzyme was produced by endogenous activation after acid treatment to remove an inhibitor and was concentrated by the successive use of affinity adsorbents prepared by the immobilization of soybean trypsin inhibitor and aminobenzamidine. The esterase- and kinin-producing activities were enriched about 1100-fold from fraction IV-1.Several properties of plasma kallikrein strengthen the impression that it is related to trypsin, namely, competitive inhibition by benzamidine and the formation of a stable p-guanidinobenzoyl acyl enzyme intermediate. Inactivation by affinity labeling with Z-LysCH2Cl was successful in contrast to the inertness of Tos-LysCH2Cl.  相似文献   

4.
Protease inhibitors were tested for their effect on the growth of normal and SV40-transformed mouse fibroblasts. The protease inhibitors TAME1 and EWTI1, which act competitively on proteases, reduce the growth of transformed cells more than that of untransformed parent cells. However, transformed cells grown in medium containing these drugs do not show contact inhibition of cell division or decreased agglutinability with Concanavalin A. The inhibition of growth is due to an extended duration of all phases of the cell cycle. The protease inhibitor TLCK1, an active site titrant reacting irreversibly with trypsin, blocks transformed cells in the premitotic stage of the cell cycle. This effect does not occur in the untransformed parent cells. The decrease in agglutinability of transformed cells treated with TLCK is correlated with a partial synchronisation in the G2 stage of the cell cycle. Our results do not support the hypothesis that protease inhibitors induce transformed cells to assume a normal growth pattern and that this is accompanied by a decreased agglutinability with plant lectins.  相似文献   

5.
Effects of twelve protease inhibitors on hatching of mouse embryos were investigated. Mouse hatching was strongly or moderately inhibited by trypsin inhibitors including p-toluenesulfonyl-Lys-CH2Cl (TLCK) and chicken ovomucoid, while inhibitors for chymotrypsin and elastase showed weak or no inhibition. These results indicate the participation of a trypsin-like protease in the hatching of mouse embryos as a hatching enzyme., Since TLCK is the strongest and an irreversible inhibitor for the enzyme, timing of the participation of the hatching enzyme in the hatching process was examined by pulse treatment of embryos with TLCK before and during the zona shedding. The results indicated that a trypsin-like hatching enzyme functions before, but not during, the zona shedding of embryos, especially during a 15 h period immediately before the beginning of the shedding.  相似文献   

6.
ATP-Dependent Proteolytic Activity from Spinach Leaves   总被引:4,自引:1,他引:3       下载免费PDF全文
Spinach (Spinacia oleracea CV Bloomsdale Long Standing) leaf cytoplasmic starch phosphorylase and rabbit muscle phosphorylase a were inactivated by incubation with partially purified leaf extract in the presence of ATP and Mg2+. The inactivating factor(s) were heat stable and susceptible to protease attack. Phosphorylase inactivation was prevented by incubation in the presence of p-aminobenzamidine and phenylboronic acid, or prolonged treatment with phenylmethylsulfonyl fluoride or leupeptin for the ATP-stimulated inhibitory activity. Mg2+ -dependent inactivation was prevented by incubation with leupeptin, phenylmethylsulfonyl fluoride, p-aminobenzamidine, or 5′-adenylate. ATP-mediated inactivation of phosphorylase was stimulated by Mg2+ with a reduction in the apparent Km for ATP. Casein-degrading activities with the same properties of ATP and/or Mg2+ stimulation, heat stability, and susceptibility to proteinase inhibitors were detected suggesting that phorphorylase inactivation was due to proteolysis. The activity was greatest at about the time of flowering and also appeared to depend on the light regime.  相似文献   

7.
Cultures of viable thymocytes and lymph node cells (LNC) were found to exhibit neutral protease activity toward radiolabeled protein substrates. Proteases were not actively secreted in serum-free culture. Thymocyte surface proteases were not affected by incubation of the cells in 1 mM ethylenediaminetetraacetic acid (EDTA) or 1 mM ethylene glycol bis(aminoethyl ether) N, N'-tetraacetic acid (EGTA); however, approximately 25% of lymph node cell surface protease activity was released from the cells by EDTA. It was concluded that the majority of protease activity displayed by both cell types was tightly associated with the cell surface. The inhibitor sensitivity of the cell surface proteases detected on hamster thymocytes and LNC and rat thymocytes was very similar. Cell surface protease activity was inhibited (85%) by the serine protease inhibitors diisopropylfluorophosphate (DFP) and phenylmethylsulfonylfluoride (PMSF) and was partially inhibited by l-1-tosylamide-2-phenylethylchloromethyl ketone(TPCK) and soybean trypsin inhibitor (SBTI), but not by N-α-p-tosyl-l-lysine-chloromethyl ketone (TLCK) or ?-aminocaproic acid (EACA). The bacterial protease inhibitor antipain was strongly inhibitory whereas leupeptin was less effective and elastinal did not inhibit cell surface protease activity. Thymocyte surface proteases were also inhibited (65%) by ZnCl2, but not be several other divalent cations. In LNC, both ZnCl2 and NiCl2 were inhibitory to a lesser extent (32% inhibition). At least one surface protease in both thymocytes and LNC could function as a plasminogen activator.  相似文献   

8.
The enzymatic activity of activated bovine blood clotting factor X toward the synthetic substrate N α-benzoyl-l-arginine ethyl ester and the inhibitory effects of a series of low molecular weight synthetic aromatic amidine and guanidine compounds on that activity were studied using the steady-state kinetic method. The kinetic parameters, Km and κcat, and the apparent dissociation constant Ki for each inhibitor, were determined for activated factor X hydrolysis of Bz-Arg-OEt at 37 °C, pH 7.8 in 0.1 n NaCl and 0.001 m CaCl2. The same constants were determined for bovine β-trypsin under identical conditions. Comparison of kinetic constants determined for both enzymes shows that activated factor X binds the substrate Bz-Arg-OEt less efficiently than β-trypsin by several orders of magnitude. However, binding of the inhibitors benzamidine, p-aminobenzamidine, pentamidine, M&B 4596, phenylguanidine, and p-guanidinobenzoic acid is similar for both enzymes. The results indicate that these two closely related serine proteases differ little in the structural arrangement and accessibility of the anionic “pocket” at which these inhibitors bind. The large differences observed with respect to substrate binding activity probably reflect substantial structural differences between the two enzymes at secondary sites adjacent to the primary anionic site.  相似文献   

9.
The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0–1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.  相似文献   

10.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

11.
An enzyme was purified from the pyloric caecum of tambaqui (Colossoma macropomum) through heat treatment, ammonium sulfate fractionation, Sephadex® G-75 and p-aminobenzamidine-agarose affinity chromatography. The enzyme had a molecular mass of 23.9 kDa, NH2-terminal amino acid sequence of IVGGYECKAHSQPHVSLNI and substrate specificity for arginine at P1, efficiently hydrolizing substrates with leucine and lysine at P2 and serine and arginine at P1′. Using the substrate z-FR-MCA, the enzyme exhibited greatest activity at pH 9.0 and 50 °C, whereas, with BAPNA activity was higher in a pH range of 7.5-11.5 and at 70 °C. Moreover, the enzyme maintained ca. 60% of its activity after incubated for 3 h at 60 °C. The enzymatic activity significantly decreased in the presence of TLCK, benzamidine (trypsin inhibitors) and PMSF (serine protease inhibitor). This source of trypsin may be an attractive alternative for the detergent and food industry.  相似文献   

12.
The high-resolution structure of bovine trypsin inhibited with DFP2 was determined by Stroud et al. (1971 and R. M. Stroud, L. M. Kay, A. Cooper &; R. E. Dickerson, Abstr. 8th Int. Congr. Biochem. 1970). The experiments reported here were designed to study the specific side-chain binding pocket of trypsin using benzamidine, which is a competitive, specific inhibitor of trypsin. High-resolution electron density syntheses and difference syntheses unambiguously identify the side-chain binding pocket, which normally recognizes and binds the side chains of arginine or lysine during proteolysis. Several important conformational differences in the protein structure are apparent between DIP- and BA-trypsins, and these are discussed with particular reference to inhibition, the binding of lysine and arginine, subsequent orientation of the target at the active site, and the enhancement of tryptic activity towards non-specific substrates seen on binding small alkyl amines or guanidines in the specific binding pocket.The BA-trypsin structure provides a good model for the binding of real substrate side chains to trypsin during catalysis, explaining the sharp trypsin specificity for lysine or arginine side chains (Weinstein &; Doolittle, 1972) and the lack of specificity for stereochemically different basic side chains. Benzamidine is shown to inhibit trypsin by steric interference with the inferred position of good substrates, even when they do not carry any side chain.Apart from the substitution of benzamidine and DIP, the most significant differences between DIP-trypsin and BA-trypsin involve complete repositioning of the side chain of Gln192, alterations in the side chains of Asp102, His57 and Ser195 at the active site, and changes in the solvent structure around this region. The carboxyl group of Asp189, which is responsible for trypsin specificity, shows no movement on binding benzamidine. The amidinium cation of benzamidine forms a salt bridge with Asp189 in BA-trypsin; a similar salt bridge can be constructed between the side chains of model substrates with lysyl or arginyl side chains and Aspl89. The γ-oxygen of Ser190 is displaced by a 120 ° rotation about its αβ bond on binding benzamidine and the binding pocket closes to sandwich the inhibitor ring between the peptide planes of 190–191 and 215–216. These contacts are presumably found in the enzyme-substrate complex with specific substrates.The active site structure at pH 8.0 is discussed with particular reference to the microscopic pKa values of Asp102 and His57, the pKa of the Asp-His system, and the mechanistic consequences of these assignments.  相似文献   

13.
This communication reports on the role of proteases in the migration of endothelial cells in vitro. Endothelial cell (EC) migration was assayed by wounding confluent monolayers of bovine aortic endothelial cells with a razor blade and counting the number of cells crossing the wound per unit time. Treatment with mitomycin C inhibited wound-induced proliferation of endothelial cells without affecting migration, indicating that in this assay migration could be measured independent of proliferation. Migration of endothelial cells in vitro in 10% serum was not affected by depletion of plasminogen, which inhibited plasmin production, or by various protease inhibitors: soybean trypsin inhibitor, Trasylol, E-amino caproic acid (EACA), ovalbumin, p-tpsyl-1-arginine-methyl ester (TAME), and benzamidine. However, migration and proliferation of endothelial cells in vitro was inhibited by acid-treated serum, a procedure commonly used to inactivate protease inhibitors. Migration of bovine smooth muscle cells, 3T3 cells and SV40-3T3 cells was inhibited by plasminogen-depleted serum; reconstitution with purified plasminogen reversed the depressed migration of only SV40-3T3. These results indicated that endothelial cell migration in vitro is not dependent on plasminogen, which may be another unique property of endothelial cells.  相似文献   

14.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein–ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

15.
This work describes the purification and characterization of a trypsin-like enzyme with fibrinolytic activity present in the abdomen of Haematobia irritans irritans (Diptera: Muscidae). The enzyme was purified using a one-step process, consisting of affinity chromatography on SBTI-Sepharose. The purified protease showed one major active proteinase band on reverse zymography with 0.15% gelatin, corresponding to a molecular mass of 25.5 kDa, with maximum activity at pH 9.0. The purified trypsin-like enzyme preferentially hydrolyzed synthetic substrates with arginine residue at the P1 position. The K m values determined for three different substrates were 1.88 × 10–4, 1.28 × 10–4, and 1.40 × 10–4 M for H--benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222), dl-Ile-Pro-Arg-p-nitroanilide (S2288), and DL-Phe-Pip-Arg-p-nitroanilide (S2238), respectively. The enzyme was strongly inhibited by typical serine proteinase inhibitors such as SBTI (soybean trypsin inhibitor, K i = 0.19 nM) and BuXI (Bauhinia ungulata factor Xa inhibitor, K i = 0.48 nM), and less inhibited by LDTI (leech-derived tryptase inhibitor, K i = 1.5 nM) and its variants LDTI 2T and 5T (0.8 and 1.5 nM, respectively). The most effective inhibitor for this protease was r-aprotinin (r-BPTI) with a K i value of 39 pM. Synthetic serine protease inhibitors presented only weak inhibition, e.g., benzamidine with K i = 3.0 × 10–4 M and phenylmethylsulfonyl fluoride (PMSF) showed traces of inhibition. The purified trypsin-like enzyme also digested natural substrates such as fibrinogen and fibrin net. The protease showed higher activity against fibrinogen and fibrin than did bovine trypsin. These data suggest that the proteolytic enzyme of H. irritans irritans is more specific to proteins from blood than are the vertebrate digestive enzymes. This enzyme's characteristics may be an adaptation resulting from the feeding behavior of this hematophagous insect.  相似文献   

16.
By using synthetic protease inhibitors, several investigators have demonstrated that cysteine proteinases are required for cell proliferation. Kininogens are potent and specific physiological inhibitors of cysteine proteinases. We have used several mouse fibroblast-derived cell lines that express biologically active T-kininogen under the control of the mouse metallothionein promoter to test its effect on cell proliferation. Our results indicate that expression of T-kininogen results in diminished proliferative capacity, as measured by reduced cell numbers, both in logarithmically growing cultures and in G0 cells induced to proliferate in response to serum. Furthermore, both fluorescence-activated cell sorting (FACS) analysis and incorporation of radioactive precursors into DNA suggest that the cells are unable to progress from G0 through the S phase of the cell cycle in response to serum stimulation. However, we find that T-kininogen-expressing cell lines are still capable of responding to growth factors present in the serum, both by activating the ERK pathway and by expressing early genes, such as c-Fos and c-Jun. Thus, our results suggest that inhibition of cysteine proteinases by T-kininogen leads to inhibition of cell proliferation between the G1 and S phases of the cell cycle.  相似文献   

17.

Background

Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity.

Methodology/Principal Findings

In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (K i = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion.

Conclusion/Significance

These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.  相似文献   

18.
Protease inhibitors control major biological protease activities to maintain physiological homeostasis. Marine bacteria isolated from oligotrophic conditions could be taxonomically distinct, metabolically unique, and offers a wide variety of biochemicals. In the present investigation, marine sediments were screened for the potential bacteria that can produce trypsin inhibitors. A moderate halotolerant novel marine bacterial strain of Oceanimonas sp. BPMS22 was isolated, identified, and characterized. The effect of various process parameters like salt concentration, temperature, and pH was studied on the growth of the bacteria and production of trypsin inhibitor. Further, the trypsin inhibitor was purified to near homogeneity using anion exchange, size exclusion, and affinity chromatography. The purified trypsin inhibitor was found to competitively inhibit trypsin activity with an inhibition coefficient, Ki, of 3.44?±?0.13 μM and second-order association rate constant, kass, of 1.08?×?103 M?1 S?1. The proteinaceous trypsin inhibitor had a molecular weight of approximately 30 kDa. The purified trypsin inhibitor showed anticoagulant activity on the human blood samples.  相似文献   

19.
《Insect Biochemistry》1985,15(6):803-810
Using a citrate-EDTA buffer as an anticoagulant it was possible to isolate intact haemocytes from the insect, Blaberus craniifer, without causing extensive degranulation and subsequent clotting. A haemocyte lysate from this insect contained prophenoloxidase (proPO), which could be activated by β 1,3-glucans. The activation process was dependent upon Ca2+ ions and seemed to occur by a limited proteolysis, since several serine protease inhibitors such as soybean trypsin inhibitor, benzamidine and p-nitrophenyl-p′-guanidobenzoate blocked convertion of proPO to the active enzyme. Treatment of proPO with urea or heat also caused proPO activation but probably without the intervention of serine proteases, since the protease inhibitors used failed to block the activation. Within the haemocyte lysate, several endopeptidases were present, which were enhanced in activity by prior treatment with β 1,3-glucans. These endopeptidases were inhibited in activity when the haemocyte lysate was incubated with benzamidine prior to the addition of β 1,3-glucan. This provides further indications that the activation of proPO involves a limited proteolytic attack. The active phenoloxidase enzyme became strongly bound to foreign surfaces and this phenomenon may assist in providing opsonic properties for the proPO cascade.  相似文献   

20.

Background and Aims

Endoprotease activation is a key step in acute pancreatitis and early inhibition of these enzymes may protect from organ damage. In vivo models commonly used to evaluate protease inhibitors require animal sacrifice and therefore limit the assessment of dynamic processes. Here, we established a non-invasive fluorescence imaging-based biomarker assay to assess real-time protease inhibition and disease progression in a preclinical model of experimental pancreatitis.

Methods

Edema development and trypsin activation were imaged in a rat caerulein-injection pancreatitis model. A fluorescent “smart” probe, selectively activated by trypsin, was synthesized by labeling with Cy5.5 of a pegylated poly-L-lysine copolymer. Following injection of the probe, trypsin activation was monitored in the presence or absence of inhibitors by in vivo and ex vivo imaging.

Results

We established the trypsin-selectivity of the fluorescent probe in vitro using a panel of endopeptidases and specific inhibitor. In vivo, the probe accumulated in the liver and a region attributed to the pancreas by necropsy. A dose dependent decrease of total pancreatic fluorescence signal occurred upon administration of known trypsin inhibitors. The fluorescence-based method was a better predictor of trypsin inhibition than pancreatic to body weight ratio.

Conclusions

We established a fluorescence imaging assay to access trypsin inhibition in real-time in vivo. This method is more sensitive and dynamic than classic tissue sample readouts and could be applied to preclinically optimize trypsin inhibitors towards intrapancreatic target inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号