首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between mean fat cell size, maximal tissue cyclic AMP concentration, and glycerol release was investigated in human subcutaneous adipose tissue incubated in vitro with or without isoprenaline or noradrenaline added at maximal effective concentrations. Basal and stimulated glycerol release and cyclic AMP concentration were each related to the fat cell size. Whether or not the phosphodiesterase inhibitor theophylline was present in the incubation system, basal and noradrenaline-induced cyclic AMP levels were significantly correlated with the fat cell size. The noradrenaline-induced cyclic AMP levels resulted in twice as rapid glycerol release as could be expected from the basal ratio between glycerol release and cyclic AMP. Furthermore, both basal and noradrenaline-induced glycerol release in relation to the cyclic AMP levels were more rapid in enlarge fat cells. It is concluded that basal and catecholamine-induced production of cyclic AMP is related to the fat cell size and that a quantitative relationship exists between rate of lipolysis and maximal tissue levels of cyclic AMP in human adipose tissue. Basal and noradrenaline-induced lipolysis are probably regulated by different mechanisms and the lipolytic sensitivity to cyclic AMP seems increased in large fat cells.  相似文献   

2.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

3.
The effect of somatostatin on lipolysis was investigated utilizing isolated chicken adipocytes. Somatostatin-14 and -28 inhibited basal lipolysis. This ability to suppress glycerol release (used as an index of lipolysis) was emphasized in presence of stimulated lipolysis. Concentration of 1 ng/ml somatostatin-14 (0.625 nM) and somatostatin-28 (0.312 nM) was found to inhibit completely the glycerol release induced by concentrations of glucagon up to 2 ng/ml (0.58 nM). The percentage of inhibition was dose-dependent. The antilipolytic effect of somatostatin-14 was also observed during ACTH and aminophylline-stimulated lipolysis. Among the mechanisms which could account for the inhibition, a possible competitive effect of somatostatin-14 with 125I-labelled glucagon binding to adipocyte membranes was excluded. The small inhibiting effect of somatostatin-14 on glycerol release prompted by dibutyryl cyclic AMP, together with the significant inhibiting effect on aminophylline-stimulated lipolysis argued for a reduction of cyclic AMP accumulation. The increase of cyclic AMP levels induced by glucagon was substantially reduced in presence of somatostatin-14. It was concluded that in chicken adipocytes somatostatin inhibited the rate of lipolysis and that reduction on cyclic AMP could be responsible, at least in part, for the antilipolytic effect.  相似文献   

4.
Activation of lipolysis by cyclic AMP in conditions with accelerated lipid mobilization was examined in subcutaneous adipose tissue incubated in vitro. In (a) 16 obese patients before and during therapeutic starvation, (b) 18 diabetics before and after antidiabetic treatment and (c) 11 hyperthyroid patients before and after anti-thyroid treatment, a positive correlation was found between stimulation of basal cyclic AMP accumulation and stimulation of basal glycerol release using either isopropyl noradrenaline or noradrenaline (r = 0.6-0.9). During antidiabetic treatment stimulation of lipolysis increased in relation to that of cyclic AMP accumulation (F = 10.1, p less than 0.01), whereas during antithyroid therapy there was a decrease (F = 95.2, p less than 0.01). Starvation did not alter the relationship between lipolysis and cyclic AMP in hypogastric adipose tissue whereas in femoral tissue stimulation of lipolysis decreased in relation to that of cyclic AMP accumulation (F = 9.6, p less than 0.01). It is concluded that the amount of cyclic AMP needed to promote lipolysis is increased during starvation and in diabetes mellitus but is decreased in hyperthyroidism. From the studies during starvation it appears that regional differences in the post-receptor activation of lipolysis exist in human adipose tissue.  相似文献   

5.
Objective: Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)–adenosine pathway in adipose tissue. Research Methods and Procedures: Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 μL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 μM isoproterenol, or 10 μM isoproterenol plus 1 mM α,β‐methylene adenosine 5′‐diphosphate (AMPCP), a 5′‐nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 μM isoproterenol, or 1 μM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Results: Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP‐provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. Discussion: These data suggest the existence of a cyclic AMP—adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.  相似文献   

6.
The initial rate of net glycerol release in norepinephrine-stimulated adipose tissue fragments was inhibited (40-78%) by procaine-HCl (1-5mM), whereas basal (unstimulated) lipolysis was unaffected. A dose-related inhibition of norepinephrine-induced lipolysis by procaine-HCl (0.1-1 mM) also occurred in adipocytes. Procaine-induced antilipolysis was associated with an augmented rather than a reduced hormone-stimulated increment in intracellular cyclic AMP. The dissociation of lipolysis from cyclic AMP accumulation has been termed the uncoupling effect of procaine. This effect of procaine was employed to define the precise mechanism of action of the antilipolytic drug clofibrate (Atromid-S) which inhibits lipolysis by reducing cyclic AMP. A reduction in cyclic AMP by clofibrate was demonstrated in norepinephrine-stimulated cells exposed to procaine (uncoupled system). Thus, the inhibitory effect of clofibrate on cyclic AMP could not be attributed to accumulation of products of lipolysis. Because neither procaine-HCl nor clofibrate had any effect on the low Km 3':5'-cyclic-AMP phosphodiesterase (EC 3.1.4.17) activity in hormone stimulated cells, the clofibrate-induced reduction in cyclic AMP was attributed to its direct action on adipocyte adenylate cyclase.  相似文献   

7.
The effect of non-selective (theophylline) inhibition of cyclic AMP breakdown on norepinephrine stimulated lipolysis rate was investigated in subcutaneous adipose tissue of obese subjects. In addition, changes in interstitial glucose and lactate concentration were assessed by means of the microdialysis technique. The interaction of endogenous released insulin and theophylline on adipocyte metabolism was determined. Theophylline and norepinephrine alone increased glycerol outflow significantly. When both agents were perfused in combination, interstitial glycerol concentration increased further. The enhanced glycerol level due to theophylline application was slightly decreased by insulin. In the presence of theophylline, extracellular glucose concentration increased, in contrast to the catecholamine. Norepinephrine decreased interstitial glucose level. When both drugs were added in combination, the level of interstitial glucose increased to about 1 mM, greater than with theophylline alone. With each intervention, lactate was synthesized. Local adipose tissue blood flow was increased by theophylline and theophylline plus norepinephrine. In conclusion, post-receptor mechanisms increased norepinephrine maximal stimulated lipolysis rate in subcutaneous adipose tissue. Glucose uptake was inhibited by the non-specific inhibitor of phosphodiesterase. The effect of insulin on inhibition of lipolysis was modest but sustained in the presence of high theophylline (10(-4) M) concentration. Phosphodiesterase activity may be relatively low in obese subjects in comparison with lean subjects. In lean subjects theophylline caused a transient reversal of the antilipolytic effect of insulin.  相似文献   

8.
The effects of glucose and of various inhibitors of glycolysis or of oxidative phosphorylation on stimulated lipolysis and on intracellular cyclic AMP and ATP levels were investigated in isolated human fat cells. The glycolysis inhibitors, NaF and monoiodoacetate, inhibited epinephrine or theophylline-stimulated lipolysis and parallely reduced the intracellular cyclic AMP and ATP levels; however, neither NaF nor monoidoacetate significantly affected dibutyryl cyclic AMP-induced lipolysis. Removal of glucose from the medium also reduced the rate of epinephrine-stimulated lipolysis and the intracellular cyclic AMP and ATP levels but failed to modify the lipolytic activity of dibutyryl cyclic AMP. The oxidative phosphorylation inhibitors, antimycin A and, under fixed conditions, 2,4-dinitrophenol also strongly decreased the adipocyte cyclic AMP and ATP levels but inhibited as well the rate of epinephrine- and of dibutyryl cyclic AMP-induced lipolysis. N-Ethylmaleimide, a mixed glycolysis and oxidative phosphorylation inhibitor, not only reduced the intracellular cyclic AMP and ATP levels and epinephrine- or theophylline-induced lipolysis, but also that stimulated by dibutyryl cyclic AMP. When glycolysis was almost fully inhibited, human fat cells were insensitive to epinephrine but remained fully responsive to dibutyryl cyclic AMP. These results, showing a relationship between ATP availability, cyclic AMP synthesis and lipolysis, suggest a different ATP requirement for cyclic AMP synthesis and triacylglycerol lipase activation, a difference which could explain why ATP issued from glucose breakdown appears to be a determinant factor for cyclic AMP synthesis, but not for triacylglycerol lipase activation in human fat cells.  相似文献   

9.
The stimulation of cyclic AMP and lipolysis by LY79771, a phenethanolamine antiobesity compound, and its 3 stereoisomers in adipose tissue of obese viable yellow mice and normal mice were studied. Both activities were stereo-specific with LY79771, the R,S isomer, and LY79730, the R,R isomer, being more potent than LY103085, the S,S isomer, and LY103672, the S,R isomer. Propranolol, a nonspecific β-antagonist, completely inhibited the elevation of cyclic AMP and lipolysis whereas atenolol, a specific β1 antagonist, inhibited the elevation of cyclic AMP but did not completely inhibit lipolysis. These findings indicate that the elevation of cyclic AMP was mediated by the β1- receptor whereas the stimulation of lipolysis was mediated by both the β1 and β2 receptors. The adipose tissue of the obese viable yellow mice responded to these compounds less than that of the normal mice.  相似文献   

10.
Y Y Yeh 《Life sciences》1976,18(1):33-38
When nicotinic acid was administered intraperitoneally to fasted rats, it reversed ketosis, decreased concentrations of cyclic AMP in adipose tissue and liver, and partially suppressed lipolysis. Administration of dibutyryl cyclic AMP reinduced ketosis in fasted rats previously treated with nicotinic acid. The results that nicotinic acid reverses ketosis by lowering tissue levels of cyclic AMP with a consequent suppression of lipolysis and ketogenesis.  相似文献   

11.
Inhibition of free fatty acid mobilization by colchicine   总被引:1,自引:0,他引:1  
Segments of epididymal adipose tissue from normal male rats were incubated with micromolar concentrations of colchicine for different periods of time up to 4 hr, and the mobilization of free fatty acids (FFA) was measured during a subsequent reincubation. Although pretreatment with colchicine did not alter basal unstimulated FFA release, mobilization of FFA in the presence of epinephrine or theophylline was reduced. However, neither lipolysis, as judged by glycerol production, nor cyclic AMP accumulation was impaired under the same conditions. To assess the possibility that colchicine might limit production of fatty acids by accelerating the entry and metabolism of glucose into adipocytes, the metabolism of glucose by adipose tissue was studied. Pretreatment with colchicine did not affect uptake of glucose nor its oxidation to CO(2), although colchicine-treated tissues did have slightly more [(14)C]glucose incorporated into the glyceride moiety of triglyceride. When adipose tissues pretreated with colchicine were incubated in an albumin-free medium, no reduction in FFA production by colchicine was observed. Because no FFA release occurs in albumin-free media, this experiment suggests that colchicine-induced inhibition of FFA mobilization results from impaired extrusion of FFA from adipose cells.  相似文献   

12.
The role of thyroid hormones on lipolysis in human subcutaneous adipose tissue was investigated. Incubation of subcutaneous fat pads with thyroxine (0.1--10 000 nM) augmented the subsequent isoproterenol stimulation of lipolysis, measured by glycerol release. The basal lipolysis could not by stimulated by thyroxine. The theophylline- and dibutyryl-cyclic AMP stimulated lipolysis also could not be increased by thyroxine at these concentrations. In separate studies, the effect of thyroxine (0.01 pM--1 microM) and triiodothyronine (0.01 pM--1 microM) on cyclic AMP accumulation was examined. No effect of thyroid hormones on cyclic AMP accumulation was seen in non-isoproterenol stimulated tissue. Fat pads stimulated by isoproterenol and then treated with thyroid hormones showed marked increases in accumulation of cyclic AMP as compared to control tissue in the presence of isoproterenol alone.  相似文献   

13.
NORADRENALINE increases the intracellular concentration of adenosine 3′,5′-monophosphate (cyclic AMP)1,2 which, in turn, enhances glycogenosis3 and lipolysis4,5 in adipose tissue by increasing Phosphorylase and lipase activities. Prostaglandin E1 (PGE1) antagonizes the induced increases in Phosphorylase activity6,7 and glycerol release in human adipose tissues8,9 and isolated adipocytes7. The finding that the stimulatory effects of the cyclic AMP analogue N6—O2 dibutyryl cyclic AMP, which mimics the hormonal effect of noradrenaline in human fat cells, are not blocked by PGE17 suggests that noradrenaline and PGE1 alter fat cell metabolism by acting on the adenyl cyclase system10. Whether noradrenaline and PGE1 alter concentrations of cyclic AMP in human fat cells, however, has not been reported.  相似文献   

14.
The effects of 2-deoxy-D-glucose (2DG), oligomycin and theophylline on the in vitro production and metabolism of glycerol and its response to insulin and epinephrine were studied in epididymal fat pads from fed rats. 2-DG failed to affect basal or epinephrine stimulated glycerol production but it decreased the uptake of 1-14 C-glycerol by the tissue and its conversion to glyceride-glycerol. Oligomycin also failed to affect the basal production of glycerol but it inhibited the effect of epinephrine on this parameter as well as the uptake and utilization of 1-14-C-glycerol. Theophylline enhanced the production of glycerol by the tissue and this effect was not further augmented by epinephrine. Theophyline also inhibited the uptake and utilization of 1-14C-glycerol; the most pronounced effect of theophylline was observed in the formation of 14C-fatty acids from 1-14C-glycerol in the presence of glucose. Insulin, but not epinephrine, decreased the inhibitory effect of theophylline on glycerol utilization. It is concluded that these compounds affect more intensely the ability of adipose tissue to metabolize glycerol than to release it through lipolysis. The pathway for glycerol utilization in adipose tissue appears to be more sensitive to changes in the availability of ATP than the mechanisms responsible for the release of glycerol from the tissue.  相似文献   

15.
The effects of the adrenergic blocking agents phenoxybenzamine, phentolamine, indoramin and propranol on adrenalin-stimulated glucose uptake, lipolysis and cyclic AMP formation have been studied in rat-isolated fat cells. The β-adrenergic blocking agent propranolol was found to inhibit adrenaline-stimulated lipolysis and cyclic AMP formation at concentrations which did not inhibit adrenalin-stimulated glucose uptake. Conversely, the α-adrenergic blocking agent phenoxybenzamine inhibited adrenalin-stimulated glucose uptake at concentrations which did not inhibit lipolysis and cyclic AMP formation. The α-adrenergic blocking agents phentolamine and indoramin did not show differential effects on adrenalin-stimulated lipolysis and glucose uptake. Phenoxybenzamine had no effect on glucose uptake stimulated by insulin, adrenocorticotropic hormone and dibutyryl cyclic AMP. It is suggested that a substantial proportion of adrenalin-stimulated glucose uptake in rat-isolated fat cells is mediated by a mechanism not involving cyclic AMP. The adrenalin receptor was apparently α in type although the lack of effects of phentolamine and indoramin were not typical of those described on other α-systems.  相似文献   

16.
Theophylline and three lipolytic agents, 2,5-bis(2-chloroethylsulfonyl)-pyrrole-3,4-dicarbonitrile (substituted pyrrole), 2,4-diamino-6-butoxy-s-triazine (substituted triazine), and 2,3-dihydro-5,6-dimethyl-3-oxo-4-pyridazinecarbonitrile (substituted pyridazine), stimulate basal lipolysis in adipose tissue in vitro. They also cause an increased release of free fatty acids, but not glycerol, from adipose tissue in which lipolysis is already maximally stimulated by epinephrine. The four compounds also inhibit cyclic AMP phosphodiesterase and the conversion of [1-(14)C]glucose to (14)CO(2). Evidence is presented that free fatty acids accumulate as the result of inhibited reesterification. The substituted pyridazine and triazine, but not the pyrrole, elevate plasma free fatty acids after oral or intraperitoneal administration in rats.  相似文献   

17.
The effect of synthetic somatostatin on insulin release was studied in vitro by using isolated islets of rats. Somatostatin, with concentrations from 10 ng/ml to 10μg/ml, inhibited insulin release induced by 16.7 mM glucose. Insulin release elicited by 10 μg/ml glucagon or 2 mM dibutyryl cyclic AMP was likewise inhibited by 100ng/ml somatostatin. By raising the calcium concentration of the incubation medium to 6 mM, glucose-induced insulin release was fully restored even in the presence of somatostatin.However, the same maneuver only partially counteracted the somatostatin inhibition of dibutyryl cyclic AMP-induced insulin release. These results suggest the involvement of calcium mobilization process in the inhibitory action of somatostatin.  相似文献   

18.
Hormonal Regulation of Adipose S-100 Protein Release   总被引:5,自引:2,他引:3  
The release of S-100 protein from epididymal fat pads was enhanced by epinephrine in vitro, and about 50% of S-100 protein in the tissue was released into the medium after 2-h incubation at 37 degrees C with 10 microM epinephrine. Similar results were obtained with the incubation of isolated adipocytes. The S-100 protein release was also enhanced by isoproterenol, norepinephrine, ACTH, and dibutyryl cyclic AMP, which all increase the lipolysis by increasing cyclic AMP levels in the tissue. Propranolol, a beta-adrenergic blocker, could block the increase of S-100 protein release by catecholamines, indicating that the release was mediated by the beta-adrenergic effect of catecholamines. However propranolol had no suppressive effect on the enhancement of S-100 protein release by ACTH or dibutyryl cyclic AMP. Insulin had an inhibitory effect on the epinephrine-enhanced S-100 protein release. Epinephrine or ACTH could not stimulate the S-100 protein release in the absence of Ca2+, whereas the epinephrine-enhanced glycerol release was not affected under the same conditions. The increase in S-100 protein release was induced by only a pretreatment of the tissue with epinephrine. However, the lipolysis in the tissue was not enhanced by the pretreatment alone. These results indicate that the release of S-100 protein from adipocytes is regulated by the hormones that have been known to control the lipolysis with a manner slightly different from that of lipolysis.  相似文献   

19.
Adipocytes were prepared by collagenase digestion of rat epididymal adipose tissue and incubated for 5, 15 or 30 minutes in Krebs-Ringer bicarbonate buffer containing albumin (40 mg/ml), glucose (1 mg/ml) and epinephrine. Calcium ion was present in some incubations at concentration of 2.5 mM and omitted from others; media with no added calcium contained 1.0 mM EGTA thereby producing a final calcium concentration of less than 10(-7) M. Glycerol release and accumulation of cyclic AMP were measured. Basal lipolysis and cell cyclic AMP levels were increased slightly but not significantly when adipocytes were incubated in calcium free media. Lipolysis could be activated with epinephrine in the absence of calcium but the sensitivity of the lipolytic response was greatly reduced; however, the maximum lipolytic response to epinephrine was not decreased in calcium free media. Similarly, incubation of adipocytes in calcium free media resulted in decreased accumulation of cyclic AMP in response to epinephrine but only when sub-maximum concentrations of the catecholamine were present. Varying the extracellular calcium concentration showed that a concentration of at least 10(-5) M was optimal for epinephrine activation of lipolysis. These observations are considered in accord with the view that activation of adenylate cyclase is facilitated by calcium ion.  相似文献   

20.
The large increase in cyclic AMP accumulation by rat white fat cells seen in the presence of lipolytic agents plus methylxanthines and adenosine deaminase was markedly inhibited by lactate. However, lipolysis was unaffected by lactate. Octanoate, hexanoate, heptanoate, and beta-hydroxybutyrate inhibited both cyclic AMP accumulation and lipolysis by rat fat cells. The mechanism by which these acids inhibit lipolysis differs from that for long chain fatty acids such as oleate. Oleate directly inhibited triglyceride lipase activity of homogenized rat adipose tissue. In contrast, octanoate, beta-hydroxybutyrate, and lacatate had no effect on triglyceride lipase activity. Hormone-stimulated adenylate cyclase activity of rat fat cell ghosts was inhibited by oleate and 4mM octanoate but not by 1.6 mM octanoate, heptanoate, hexanoate, beta-hydroxybutyrate or lactate. None of the acids affected the soluble protein kinase activity of rat adipose tissue. There was no stimulation by lactate, butyrate, beta-hydroxybutyrate, or octanoate of the soluble or particulate cyclic AMP antilipolytic action of a short chain acid such as octanoate or hexanoate was not accompanied by any drop in total fat cell ATP. The mechanism by which lactate lowers cyclic AMP but not lipolysis remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号