首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
1. The Macedonian mouse (Mus macedonicus), a small (15 g) mesic rodent distributed in the Mediterranean ecosystem, is a species which invades post fire habitats in the first stages of habitat recovery. 2. In order to assess the seasonal acclimatization of thermoregulatory and metabolic mechanisms, the response of several physiological variables to photoperiod manipulations under a constant Ta were studied. 3. Our results show that mice acclimated to a short photoperiod increased their resistance to cold, while acclimation to a long photoperiod increased their resistance to high Tas and the effectiveness of their thermoregulatory mechanisms. Body mass increased in mice acclimated to a short photoperiod. We conclude that photoperiod is an important environmental cue for seasonal acclimatization of thermoregulatory and metabolic mechanisms in this species.  相似文献   

3.
Studies of wintering birds have demonstrated a correlation between social rank and energy expenditures. It is assumed that dominance is energetically costly because of increased activity, possibly caused by elevated androgen levels. As winter acclimatization leads to an increase in metabolic rate, maintaining dominance status in a cold climate can be a substantial challenge. We measured resting metabolic rates in dominant and subordinate dark-eyed juncos (Junco hyemalis) living in small groups in a controlled winter environment. We found no significant effect of social rank when controlling for body size. It has been shown previously that high testosterone levels during the nonbreeding season can lead to higher body conductance, fat loss, and higher nocturnal body temperature. A hypothesis explaining our result is that for juncos it is preferable to maintain low androgen levels during winter and to maintain social rank using a mechanism other than higher agonistic activity.  相似文献   

4.
The fatty acid composition of phospholipids in thoracic muscles of Pyrrhocoris apterus was related to acclimatization temperature and diapause. Two unsaturated fatty acids, linoleic (18:2n-6) and oleic (18:1n-9), and two saturated, palmitic (16:0) and stearic (18:0), dominated at all temperatures. In contrast to most other reports, the proportion of unsaturated fatty acids did not increase with decreasing temperature; there was a positive correlation between the unsaturation ratio and temperature in total phospholipids (r=0.67). The most prominent response to cold acclimatization was an increase in the proportion of 16:0 fatty acid and a corresponding decrease in the proportion of fatty acids with 18 carbons. The negative correlation between the proportion of 16:0 and temperature was stronger in phospholipids with phosphatidylethanolamine (PE) head group (r=−0.85) than in phospholipids with phosphatidylcholine (PC) head group (r=−0.58). Changes in fatty acid profiles associated with photoperiodic induction of diapause had the same trend as changes related to cold acclimatization. Similar to most other reports, the proportion of PE increased, while the proportion of PC decreased with decreasing temperature. In contrast to a general rule, the PE-phospholipids were less unsaturated than PC-phospholipids.  相似文献   

5.
Coping with cold winter conditions is a major challenge for many insects.In early spring we observed newly emerged Drosophila subobscura, which had overwintered as larvae and pupae. As temperatures increase during spring these flies are faced with higher minimum and maximum temperatures in their natural microhabitat. Thus, there is a potential costly mismatch between winter and early spring acclimatization and the increased ambient temperatures later in adult life.We obtained individuals from a natural Danish population of D. subobscura and acclimated them in the laboratory to 20 °C for one generation, and compared critical thermal maximum (CTmax) and minimum (CTmin) to that of individuals collected directly from their natural microhabitat. The two populations (laboratory and field) were subsequently both held in the laboratory at 20 °C and tested for their CTmax and CTmin every third day for 28 days.At the first day of testing, field acclimatized D. subobscura had both higher heat and cold resistance compared to laboratory flies, and thereby a considerable larger thermal scope. Following transfer to the laboratory, cold and heat resistance of the field flies decreased over time relative to the laboratory flies. Despite the substantial decrease in thermal tolerances the thermal scope remained larger for field acclimatized individuals for the duration of the experiment.We conclude that flies acclimatized to their natural microhabitat had increased cold resistance, without a loss in heat tolerance. Thus while a negative correlation between cold and heat tolerance is typically observed in laboratory studies in Drosophila sp., this was not observed for field acclimatized D. subobscura in this study. We suggest that this is an adaptation to juvenile overwintering in temperate cold environments, where developmental (winter) temperatures can be much lower than temperatures experienced by reproducing adults after emergence (spring). The ability to gain cold tolerance through acclimatization without a parallel loss of heat tolerance affects thermal scope and suggests that high and low thermal tolerance act through mechanisms with different dynamics and reversibility.  相似文献   

6.
7.
8.
Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity.  相似文献   

9.
What mechanism links climate change and social change? Palaeoanthropological analysis of human remains suggests that abrupt climate change is linked to societal restructuring, but it has been challenging to reliably identify the exact mechanisms underlying this relationship. Here we identify one potential mechanism that can link climate to behavior change, and underpins many of the reported findings on social restructuring. Specifically, we show that daily weather is linked to human planning behavior, and this effect is moderated by climate. Our results demonstrate that as weather gets colder, humans increase their planning in cold regions and decrease planning in warm regions. Since planning has previously been linked to group efficiency, cooperation, and societal organization, our work suggests planning is one mechanism that can link climate change to societal restructuring.  相似文献   

10.
11.
12.
Responses to a standard cold stress of 10°C for 2 h applied before (Melbourne) and four times during a year in Antarctica were observed in 10 adult male Caucasians, 7 of whom were re-tested after returning from Antarctica. An early form of cold acclimatization developed within a month of arriving in Antarctica in which the cold stress response was characterised by cooler peripheral temperatures than in the pre-Antarctic series. This was replaced by a late form in which the rectal temperature was cooler and peripheral temperatures warmer than in Melbourne. Maintenance of rectal temperature was equal in both forms and superior to that obtained before going to Antarctica. An improved peripheral rewarming rate was associated with the late form. The reduction in plasma cortisol concentration at the end of the cold stresses in Antarctica compared with those in Melbourne was a further indication of the establishment of cold acclimatization. An increased delay in the onset of shivering, a lowered skin temperature at the onset of shivering, and a reduced noradrenaline response was observed in the late Antarctic series. Adrenaline excretion during the cold stress increased in the later series but the rise from the pre-stress level remained fairly constant. This increase did not appear to be related to climate. Similarities with cold adapted rodents and newborn infants suggest that the infantile mechanism of non-shivering thermogenesis mediated by noradrenaline was partially re-established.  相似文献   

13.
《Life sciences》1997,61(21):PL321-PL326
In the last few years, considerable evidence has appeared concerning the importance of the opioid systems in the action mechanism of some antidepressant drugs. This action mechanism could be mediated through the inhibition of the enzymes reponsible for enkephalin degradation. In this sense, imipramine treatment in vivo increases the enkephalin levels, and this effect is enhanced by inhibitors of enkephalin-degrading enzymes. The present work shows the effects in vitro of imipramine and its active metabolite desipramine on the activities of two membrane-bound enkephalin-degrading aminopeptidases present in rat brain. Imipramine and desipramine in vitro do not affect the aminopeptidase M activity, but they reversibly inhibits the aminoeptidase MII. The enzyme kinetic analysis shows that this enzyme molecule has two different binding sites for each drug, which exert a mixed type enzyme inhibition.  相似文献   

14.
Heat shock protein 70 (HSP70) is an important chaperone, involved in protein folding, refolding, translocation and complex remodeling reactions under normal as well as stress conditions. However, expression of HSPA1A gene in heat and cold stress conditions associates with other chaperons and perform its function. Experimental structure for Camel HSP70 protein (cHSP70) has not been reported so far. Hence, we constructed 3D models of cHSP70 through multi- template comparative modeling with HSP110 protein of S. cerevisiae (open state) and with HSP70 protein of E. coli 70kDa DnaK (close state) and relaxed them for 100 nanoseconds (ns) using all-atom Molecular Dynamics (MD) Simulation. Two stable conformations of cHSP70 with Substrate Binding Domain (SBD) in open and close states were obtained. The collective mode analysis of different transitions of open state to close state and vice versa was examined via Principal Component Analysis (PCA) and Minimum Distance Matrix (MDM). The results provide mechanistic representation of the communication between Nucleotide Binding Domain (NBD) and SBD to identify the role of sub domains in conformational change mechanism, which leads the chaperone cycle of cHSP70. Further, residues present in the chaperon functioning site were also identified through protein-peptide docking. This study provides an overall insight into the inter domain communication mechanism and identification of the chaperon binding cavity, which explains the underlying mechanism involved during heat and cold stress conditions in camel.  相似文献   

15.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in small, wild mammals. To determine the contributions of photoperiod and cold on seasonal changes in energy metabolism and body mass, the resting metabolic rates (RMR), nonshivering thermogenesis (NST), energy intake and gut morphology of the tree shrews were determined in winter and summer and in laboratory acclimated animals. Body mass, RMR and NST increased in winter, and these changes were mimicked by exposing animals to short-day photoperiod or cold in the animal house. Energy intake and digested energy also increased significantly in winter, and also during exposure of housed animals to both short-day photoperiod and cold. The lengths and weights of small intestine increased in winter. These results indicated that Tupaia belangeri overcomes winter thermoregulatory challenges by increasing energy intake and thermogenesis, and adjusted gut morphology to balance the total energy requirements. Short-day photoperiod and cold can serve as environmental cues during seasonal acclimatization.  相似文献   

16.
Differences of thermostability were studied in red blood cells of the trout Salmo irideus differing in sex and age, as well as structural-dynamic characteristics of erythrocyte membrane proteins at seasonal acclimatization in the interval of reservoir water temperature of 0–19°C. An increase of resistance of erythrocytes to temperature lysis with elevation of the environmental temperature was revealed to be accompanied by a rise of the proteins segmental mobility and a decrease of intermolecular interactions in spectrin-actin cytoskeleton from the data of the ESR spin labeling method. Regulation of erythrocyte stability during acclimation was concluded to occur both changes of the fatty acids chain package at the variations of lipid composition and by changes of the cytoskeleton structural lability. Thereby this provides an increase of the bilayer firmness, on the one hand, while, on the other hand, a rise of elasticity and expansibility of the membrane on the whole, which increases resistance of cells to colloidal-osmotic hemolysis. Changes of concentration of oxygen dissolved in water, which are caused by temperature fluctuations, do not deem to be of crucial importance for structural stability of erythrocytes, as it can be compensated by another mechanism, specifically by changes of affinity of hemoglobin to oxygen.  相似文献   

17.
18.
There is increasing evidence that hand immobilization is associated with various changes in the brain. Indeed, beta band coherence is strongly related to motor act and sensitive stimuli. In this study we investigate the electrophysiological and cortical changes that occur when subjects are submitted to hand immobilization. We hypothesized that beta coherence oscillations act as a mechanism underlying inter- and intra-hemispheric changes. As a methodology for our study fifteen healthy individuals between the ages of 20 and 30 years were subjected to a right index finger task before and after hand immobilization while their brain activity pattern was recorded using quantitative electroencephalography. This analysis revealed that hand immobilization caused changes in frontal, central and parietal areas of the brain. The main findings showed a lower beta-2 band in frontal regions and greater cortical activity in central and parietal areas. In summary, the coherence increased in the frontal, central and parietal cortex, due to hand immobilization and it adjusted the brains functioning, which had been disrupted by the procedure. Moreover, the brain adaptation upon hand immobilization of the subjects involved inter- and intra-hemispheric changes.  相似文献   

19.
Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels and increased blood pressure that have been attributed to adaptation to the extreme cold climate. In this study we introduce a dataset of 200 individuals from ten indigenous Siberian populations that were genotyped for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. A region on chromosome 11 (chr11:66–69 Mb) contained the largest amount of clustering of significant signals and also the strongest signals in all the different selection tests performed. We present a list of candidate cold adaption genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture.  相似文献   

20.
The Nrf2-Keap1 signaling pathway is a protective mechanism promoting cell survival. Activation of the Nrf2 pathway by natural compounds has been proven to be an effective strategy for chemoprevention. Interestingly, a cancer-promoting function of Nrf2 has recently been observed in many types of tumors due to deregulation of the Nrf2-Keap1 axis, which leads to constitutive activation of Nrf2. Here, we report a novel mechanism of Nrf2 activation by arsenic that is distinct from that of chemopreventive compounds. Arsenic deregulates the autophagic pathway through blockage of autophagic flux, resulting in accumulation of autophagosomes and sequestration of p62, Keap1, and LC3. Thus, arsenic activates Nrf2 through a noncanonical mechanism (p62 dependent), leading to a chronic, sustained activation of Nrf2. In contrast, activation of Nrf2 by sulforaphane (SF) and tert-butylhydroquinone (tBHQ) depends upon Keap1-C151 and not p62 (the canonical mechanism). More importantly, SF and tBHQ do not have any effect on autophagy. In fact, SF and tBHQ alleviate arsenic-mediated deregulation of autophagy. Collectively, these findings provide evidence that arsenic causes prolonged activation of Nrf2 through autophagy dysfunction, possibly providing a scenario similar to that of constitutive activation of Nrf2 found in certain human cancers. This may represent a previously unrecognized mechanism underlying arsenic toxicity and carcinogenicity in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号