首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A laboratory-scale anaerobic sequencing batch reactor (ASBR) was operated using a glucose-based synthetic wastewater to study the effects of tylosin, a macrolide antimicrobial commonly used in swine production, on treatment performance. The experimental period was divided into three consecutive phases with different influent tylosin concentrations (0, 1.67, and 167 mg/L). The addition of 1.67 mg/L tylosin to the reactor had negligible effects on the overall treatment performance, that is, total methane production and effluent chemical oxygen demand did not change significantly (P < 0.05), yet analyses of individual ASBR cycles revealed a decrease in the rates of both methane production and propionate uptake after tylosin was added. The addition of 167 mg/L tylosin to the reactor resulted in a gradual decrease in methane production and the accumulation of propionate and acetate. Subsequent inhibition of methanogenesis was attributed to a decrease in the pH of the reactor. After the addition of 167 mg/L tylosin to the reactor, an initial decrease in the rate of glucose uptake during the ASBR cycle followed by a gradual recovery was observed. In batch tests, the specific biogas production with the substrate butyrate was completely inhibited in the presence of tylosin. This study indicated that tylosin inhibited propionate- and butyrate-oxidizing syntrophic bacteria and fermenting bacteria resulting in unfavorable effects on methanogenesis.  相似文献   

2.
The phylogenetic and functional diversity of syntrophic propionate-oxidizing bacteria (POB) present in an anaerobic digester was investigated by microautoradiography combined with fluorescent in situ hybridization (MAR–FISH) that can directly link 16S rRNA phylogeny with in situ metabolic function. The syntrophic POB community in the anaerobic digester sludge consisted of at least four phylogenetic groups: Syntrophobacter, uncultured short rod Smithella (Smithella sp. SR), uncultured long rod Smithella (Smithella sp. LR), and an unidentified group. The activities of these POB groups were dependent on the propionate concentrations. The uncultured Smithella sp. SR accounted for 52–62% of the total active POB under all the propionate concentrations tested (0.5–15 mM). In contrast, uncultured Smithella sp. LR was active only at lower propionate concentrations and became a dominant active POB at 0.5 mM of propionate. Syntrophobacter accounted for 16–31% of the total active POB above 2.5 mM propionate, whereas the active Syntrophobacter population became low (ca. 6%) at 0.5 mM of propionate. The anaerobic digester was operated in a fill and draw mode, resulting in periodical changes in propionate concentration ranging from 0 to 10 mM. These phylogenetically and functionally diverse, to some extent functionally redundant, active POB communities were dynamically responding to the periodical changes in propionate concentration.  相似文献   

3.
A target‐primed in situ rolling circle amplification (in situ RCA) protocol was developed for detection of single‐copy genes inside bacterial cells and optimized with Pseudomonas stutzeri, targeting nitrite and nitrous oxide reductase genes (nirS and nosZ). Two padlock probes were designed per gene to target both DNA strands; the target DNA was cut by a restriction endonuclease close to the probe binding sites, which subsequently were made accessible by 5′‐3′ exonucleolysis. After hybridization, the padlock probe was circularized by ligation and served as template for in situ RCA, primed by the probe target site. Finally, the RCA product inside the cells was detected by standard fluorescence in situ hybridization (FISH). The optimized protocol showed high specificity and signal‐to‐noise ratio but low detection frequency (up to 15% for single‐copy genes and up to 43% for the multi‐copy 16S rRNA gene). Nevertheless, multiple genes (nirS and nosZ; nirS and the 16S rRNA gene) could be detected simultaneously in P. stutzeri. Environmental application of in situ RCA‐FISH was demonstrated on activated sludge by the differential detection of two types of nirS‐defined denitrifiers; one of them was identified as Candidatus Accumulibacter phosphatis by combining in situ RCA‐FISH with 16S rRNA‐targeted FISH. While not suitable for quantification because of its low detection frequency, in situ RCA‐FISH will allow to link metabolic potential with 16S rRNA (gene)‐based identification of single microbial cells.  相似文献   

4.
To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back‐arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture‐independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on‐ and off‐ridge of the back‐arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide‐oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron‐oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.  相似文献   

5.
A taxonomic reevaluation of the paralytic shellfish toxin (saxitoxins) producing cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Born. & Flah. LMECYA31 was done using morphology and 16S rRNA gene sequences. We found that strain LMECYA31 was incorrectly identified as Aph. flos‐aquae based on (a) lack of bundle formation in trichomes, (b) shape of terminal cells in the trichomes, (c) lower similarity (<97.5%) in the 16S rRNA gene sequences relative to those of Aph. flos‐aquae, and (d) comparison within a phylogenetic tree of 16S rRNA gene sequences. The shape of the terminal trichome cells and the shape and size of the vegetative cell, heterocyst, and akinete in strain LMECYA31 match characters of Aph. issatschenkoi (Ussachew) Proschkina‐Larvernko. 16S rRNA gene sequences and phylogenetic clusters constructed from 16S rRNA gene sequences support our conclusion that strain LMECYA31 should be Aph. issatschenkoi.  相似文献   

6.
The use of probiotics such as Lactobacillus in animal feeds has gained popularity in recent years. In this study the 16S rRNA gene sequence of L. acidophilus in two commercial agents which have been used in animal feeds, LAB‐MOS and Ghenisson 22, was determined. Phylogenetic tree analysis revealed that the two agents, strain MNFLM01 in LAB‐MOS and strain GAL‐2 in Ghenisson 22, belonged to L. rhamnosus (a member of the L. casei group) and L. johnsonii (a member of the L. acidophilus group), respectively. Biochemical tests assigned the two as L. rhamnosus and ambiguously as L. acidophilus. The data suggest that 16S rRNA gene sequence analysis provides more accurate identification of Lactobacillus species than biochemical tests and would allow quality assurance of relevant commercial products. The 16S rRNA gene sequences of strains MNFLM01 and GAL‐2 determined in this study have been submitted to the DDBJ/EMBL/GenBank accession numbers under accession numbers AB288235 and AB295648, respectively.  相似文献   

7.
A multi‐locus approach was used to examine the DNA sequences of 10 nominal species of blackfly in the Simulium subgenus Gomphostilbia (Diptera: Simuliidae) in Malaysia. Molecular data were acquired from partial DNA sequences of the mitochondria‐encoded cytochrome c oxidase subunit I (COI), 12S rRNA and 16S rRNA genes, and the nuclear‐encoded 18S rRNA and 28S rRNA genes. No single gene, nor the concatenated gene set, resolved all species or all relationships. However, all morphologically established species were supported by at least one gene. The multi‐locus sequence analysis revealed two distinct evolutionary lineages, conforming to the morphotaxonomically recognized Simulium asakoae and Simulium ceylonicum species groups.  相似文献   

8.
In a previous study, we analyzed the molecular diversity of Planctomycetales by PCR amplification and sequencing of 16S rRNA clone libraries generated from a municipal wastewater plant, using planctomycete-specific and universal primer sets (R. Chouari, D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir, Appl. Environ. Microbiol. 69:7354-7363, 2003). Only a small fraction (4%) of the 16S rRNA gene sequences of the digester clone library corresponded to the Planctomycetales division. Importantly, 85.9% of the digester clone sequences are grouped into two different clusters named WWE1 (81.4% of the sequences) and WWE2 (4.5%) and are distantly affiliated with unidentified bacterial sequences retrieved from a methanogenic reactor community and from a termite gut, respectively. In phylogenetic analysis using 16S rRNA gene sequence representatives of the main phylogenetic bacterial divisions, the two clusters are monophyletic, branch apart from each other, and are distantly related to Planctomycetales and other bacterial divisions. A novel candidate division is proposed for WWE1, while the WWE2 cluster strongly affiliates with the recently proposed Lentisphearae phylum. We designed and validated a 16S rRNA probe targeting WWE1 16S rRNA sequences by both fluorescent in situ hybridization (FISH) and dot blot hybridization (DBH). Results of FISH analysis show that WWE1 representative microorganisms are rods or filamentous shaped, while DBH shows that WWE1 accounts for 12% of the total bacterial rRNA within the anaerobic digester. The remaining 16S rRNA gene sequences are affiliated with Verrucomicrobia or recently described candidate divisions with no known pure culture representatives, such as OD1, BRC1, or NBL-UPA2, making up less than 3.5% of the clone library, respectively. This inventory expands the known diversity of the latter bacterial division-level lineages.  相似文献   

9.
The Florida Everglades is one of the largest freshwater marshes in North America and has been subject to eutrophication for decades. A gradient in P concentrations extends for several kilometers into the interior of the northern regions of the marsh, and the structure and function of soil microbial communities vary along the gradient. In this study, stable isotope probing was employed to investigate the fate of carbon from the fermentation products propionate and butyrate in soils from three sites along the nutrient gradient. For propionate microcosms, 16S rRNA gene clone libraries from eutrophic and transition sites were dominated by sequences related to previously described propionate oxidizers, such as Pelotomaculum spp. and Syntrophobacter spp. Significant representation was also observed for sequences related to Smithella propionica, which dismutates propionate to butyrate. Sequences of dominant phylotypes from oligotrophic samples did not cluster with known syntrophs but with sulfate-reducing prokaryotes (SRP) and Pelobacter spp. In butyrate microcosms, sequences clustering with Syntrophospora spp. and Syntrophomonas spp. dominated eutrophic microcosms, and sequences related to Pelospora dominated the transition microcosm. Sequences related to Pelospora spp. and SRP dominated clone libraries from oligotrophic microcosms. Sequences from diverse bacterial phyla and primary fermenters were also present in most libraries. Archaeal sequences from eutrophic microcosms included sequences characteristic of Methanomicrobiaceae, Methanospirillaceae, and Methanosaetaceae. Oligotrophic microcosms were dominated by acetotrophs, including sequences related to Methanosarcina, suggesting accumulation of acetate.  相似文献   

10.
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full‐scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3‐N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse‐transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3‐N, Fe, S, Mo and Ni. A co‐occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy‐sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.  相似文献   

11.
Sulfate-reducing bacteria (SRB) appear to be the main mediators of mercury methylation in sediments, which are deemed to be major sites of methylmercury (MMHg) production. However, recent studies have also found significant MMHg formation in the water column of lakes across North America. To investigate the potential involvement of SRB in mercury methylation in the water column of a stratified oligotrophic lake, two of the main families of SRB (Desulfobacteraceae and Desulfovibrionaceae) were quantified by Real-Time Polymerase Chain Reaction of the 16S rRNA gene. MMHg production was measured applying a stable isotope technique using 198HgCl. Methylation assays were conducted at different water depths and under stimulation with lactate, acetate or propionate and inhibition with molybdate. Desulfobacteraceae and Desulfovibrionaceae16S rRNA gene copies in control samples accounted for 0.05% to 33% and <0.01% to 1.12% of the total bacterial 16S rRNA, respectively. MMHg formation was as high as 0.3 ng L?1 day?1 and largest in lactate amended samples. Strain isolation was only achieved in lactate amended media with all isolated strains being SRB belonging to the Desulfovibrio genus according to their 16S rRNA gene sequence. Isolated strains methylated between 0.06 and 0.2% of 198HgCl per day. Acetate and propionate did not stimulate mercury methylation as much as lactate. Two strains were identified as Desulfovibrio sp. 12ML1 (FJ865472) and Desulfovibrio sp. 12ML3 (FJ865473), based on partial sequences of their 16S rRNA and DSR gene. Methylation assays and bacteria characterization suggest that Desulfovibrionaceae is an important mercury methylators in Lake 658. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

12.
Cereal distillers grains, a by-product from bioethanol industry, proved to be a suitable feedstock for biogas production in laboratory scale anaerobic digesters. Five continuously stirred tank reactors were run under constant conditions and monitored for biogas production and composition along with other process parameters. Iron additives for sulfide precipitation significantly improved the process stability and efficiency, whereas aerobic pretreatment of the grains had no effect. The microbial communities in the reactors were investigated for their phylogenetic composition by terminal restriction fragment length polymorphism analysis and sequencing of 16S rRNA genes. The bacterial subcommunities were highly diverse, and their composition did not show any correlation with reactor performance. The dominant phylotypes were affiliated to the Bacteroidetes. The archaeal subcommunities were less diverse and correlated with the reactor performance. The well-performing reactors operated at lower organic loading rates and amended with iron chloride were dominated by aceticlastic methanogens of the genus Methanosaeta. The well-performing reactor operated at a high organic loading rate and supplemented with iron hydroxide was dominated by Methanosarcina ssp. The reactor without iron additives was characterized by propionate and acetate accumulation and high hydrogen sulfide content and was dominated by hydrogenotrophic methanogens of the genus Methanoculleus.  相似文献   

13.
The microbial diversity and community structure in twenty-one groundwater samples from high arsenic shallow aquifers of Hetao Basin, Inner Mongolia, China was investigated with an integrated approach including polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene phylogenetic analyses. A total of 25 bacterial and 32 archaeal DGGE bands were exercised for sequencing. Phylogenetic analyses showed that the bacterial DGGE bands were dominated by Proteobacteria, and the archaeal bands were dominated by Thaumarchaeota and Euryarchaeota. Based on arsenic concentrations, three samples (corresponding to low, medium, and high level of arsenic, respectively) were selected for construction of 16S rRNA gene clone libraries. A total of 912 (468 and 444 for bacteria and archaea, respectively) 16S rRNA gene clone sequences were obtained and subjected to phylogenetic analyses. The results showed that bacterial communities of these samples were dominated by Acinetobacter, Pseudomonas, Massilia, Dietzia, Planococcus, Brevundimonas, Aquabacterium and Geobacter, and archaeal communities by Nitrosophaera, Thermoprotei and Methanosaeta. The relative abundance of major groups varied as a function of changes in groundwater geochemistry. Acinetobacter, Brevundimonas, Geobacter, Thermoprotei and Methanosaeta dominated in high arsenic samples with high concentrations of methane and Fe(II), and low concentrations of SO2? 4 and NO? 3, while Pseudomonas and Nitrosophaera were abundant in low arsenic groundwater. These results imply that microbes play an important role in arsenic mobilization in the shallow aquifers of Hetao Basin, Inner Mongolia.  相似文献   

14.
Aims: For the rapid detection of Laribacter hongkongensis, which is associated with human community‐acquired gastroenteritis and traveller’s diarrhoea, we developed a duplex species‐specific PCR assay. Methods and Results: Full‐length of the 16S–23S rRNA intergenic spacer region (ISR) sequences of 52 L. hongkongensis isolates were obtained by PCR‐based sequencing. Two species‐specific primer pairs targeting 16S rRNA gene and ISR were designed for duplex PCR detection of L. hongkongensis. The L. hongkongensis species‐specific duplex PCR assay showed 100% specificity, and the minimum detectable level was 2·1 × 10?2 ng μl?1 genomic DNA which corresponds to 5000 CFU ml?1. Conclusions: The high specificity and sensitivity of the assay make it suitable for rapid detection of L. hongkongensis. Significance and Impact of the Study: This species‐specific duplex PCR method provides a rapid, simple, and reliable alternative to conventional methods to identify L. hongkongensis and may have applications in both clinical and environmental microbiology.  相似文献   

15.
Amaranth (Amaranthus retroflexus L.) is a common weed that grows vigorously in orchards, roadside verges, fields, woods and scrubland in China. In 2009, phytoplasma disease surveys were made in orchards in Beijing, China, and stem/leaf tissues were collected from asymptomatic amaranths. Direct PCR using universal phytoplasma primers P1/P7 detected 16S rRNA gene sequences in every DNA sample extracted from the symptomless amaranths. Sequence alignment and phylogenetic analyses of the 16S rRNA gene determined that the amaranth phytoplasma strain was related to ‘Candidatus Phytoplasma ziziphi’. Furthermore, virtual RFLP pattern analysis showed that the amaranth phytoplasma belonged to the 16SrV‐B subgroup. This is the first report of symptomless plants containing a ‘Candidatus Phytoplasma ziziphi’‐related strain.  相似文献   

16.
A new strain of syntrophically propionate-oxidizing fermenting bacteria, strain KoProp1, was isolated from anoxic sludge of a municipal sewage plant. It oxidized propionate or lactate in cooperation with the hydrogen- and formate-utilizingMethanospirillum hungatei and grew as well in pure culture without a syntrophic partner with propionate or lactate plus sulfate as energy source. In all cases, the substrates were oxidized stoichiometrically to acetate and CO2, with concomitant formation of methane or sulfide. Cells formed gas vesicles in the late growth phase and contained cytochromesb andc, a menaquinone-7, and desulforubidin, but no desulfoviridin. Enzyme measurements in cell-free extracts indicated that propionate was oxidized through the methylmalonyl CoA pathway. Protein pattern analysis by SDS-PAGE of cell-free extracts showed that strain KoProp1 differs significantly fromSyntrophobacter wolinii and from the propionate-oxidizing sulfate reducerDesulfobulbus propionicus. 16S rRNA sequence analysis revealed a significant resemblance toS. wolinii allowing the assignment of strain KoProp1 to the genusSyntrophobacter as a new species,S. pfennigii.  相似文献   

17.
This study characterized the microbial community and population dynamics in an anaerobic hybrid reactor (AHR) treating cassava starch wastewater. Methanogens and nonmethanogens were followed during the start-up and operation of the reactor, and linked to operational and performance data. Biomass samples taken from the sludge bed and packed bed zones of the AHR at intervals throughout the operational period were examined by 16S rRNA fluorescence in situ hybridization (FISH). The start-up seed and the reactor biomass were sampled during the feeding of the wastewater with a chemical oxygen demand (COD) value of 8 g L−1 and a hydraulic retention time (HRT) of 8 days. These samples were characterized by the predominance of cells with long-rod morphology similar to Methanosaeta spp. Following a sharp operational change, accomplished by increasing the COD concentration of the organic influent from 8 to 10 g L−1 and reducing the HRT from 8 to 5 days, there was a doubling of the organic loading rate, a reduction of the COD removal efficiency, as well as decreased methane content in the biogas and an accumulation of total volatile acids in the reactor. Moreover, this operational change resulted in a significant population shift from long-rod Methanosaeta-like cells to tetrad-forming Methanosarcina-like cells. The distributions of microbial populations involved in different zones of the AHR were determined. The results showed that nonmethanogens became the predominant population in both sludge and the packed bed zone. However, the percentage of methanogens in the packed bed zone was higher than that in the sludge bed zone. This higher percentage of methanogens was likely caused by the fact that the packed bed zone provided a suitable environmental condition with an appropriate nutrient availability for methanogen growth.  相似文献   

18.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14CO2‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 108 cells ml?1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.  相似文献   

19.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸<丁酸<丙酸;最大比产甲烷速率和底物转化效率依次是丙酸<乙酸<丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobact...  相似文献   

20.
In the year 2010, in a survey in Guangxi Province, China, to detect and characterize phytoplasmas in a huanglongbing (HLB)‐infected grapefruit (Citrus paradisi) orchard, 87 leaf samples with symptoms of blotchy mottle were collected from symptomatic grapefruit trees, and 320 leaf samples from symptomless trees adjacent to the symptomatic trees. Nested polymerase chain reaction (PCR) using universal phytoplasma primer set P1/P7 followed by primer set fU5/rU3 identified 7 (8.0%) positive samples from symptomatic samples but none from symptomless samples. Of the 87 symptomatic samples, 77 (88.5%) were positive for ‘Candidatus Liberibacter asiaticus’ and 5 for both phytoplasma and ‘Ca. L. asiaticus’. Sequence analysis indicated that seven 881‐bp amplicons, amplified by nested phytoplasma primer sets P1/P7 and fU5/rU3, shared 100.0% sequence identity with each other. Genome walking was then performed based on the 881 bp known sequences, and 5111 bp of upstream and downstream sequences were obtained. The total 5992 bp sequences contained a complete rRNA operon, composed of a 16S rRNA gene, a tRNAIle gene, a 23S rRNA gene and a 5S rRNA gene followed by eight tRNA genes. Phylogenetic analysis and virtual restriction fragment length polymorphism analysis confirmed the phytoplasma was a variant (16SrII‐A*) of phytoplasma subgroup 16SrII‐A. As phytoplasmas were only detected in blotchy‐mottle leaves, the 16SrII‐A* phytoplasma identified was related to HLB‐like symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号