首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以小麦品种‘西农88’(Triticum aestivum L.,cv.Xinong 88)为材料,研究了外源施加不同浓度茉莉酸(1、2.5、5、10 mmol/L)对UV-B辐射(1.5 kJ·m-2·d-1)下小麦幼苗光合色素、抗氧化酶、丙二醛、游离脯氨酸、紫外吸收物、花青素、根系活力等生理指标以及对其生长的影响,探讨了茉莉酸在UV-B辐射胁迫中的可能作用及其作用机制.研究结果表明,外源茉莉酸对小麦幼苗生理指标产生显著影响,并且表现出浓度效应,其中较低浓度的茉莉酸(1 mmol/L和2.5 mmol/L)能明显提高小麦幼苗的UV-B抗性.表现为低浓度茉莉酸显著提高UV-B辐射下小麦幼苗叶片中的总叶绿素含量、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性.并且外源施加的茉莉酸还能够增加小麦幼苗的游离脯氨酸含量,降低脂质过氧化水平,提高花青素含量,增强根系活力.可见,茉莉酸通过提高小麦幼苗的抗氧化酶活性,增加渗透调节物含量以及保护性色素含量,从而缓解膜脂过氧化程度和提高防御物质含量,进而增强植物抵抗UV-B辐射胁迫的能力,保证小麦幼苗正常生长.  相似文献   

2.
The present study demonstrated the combined effect of 24-epibrassinolide and salicylic acid against lead (Pb, 0.25, 0.50, and 0.75 mM) toxicity in Brassica juncea seedlings. Various parameters including water status, metal uptake, total water- and lipid-soluble antioxidants, metal chelator content (total thiols, protein-bound thiols, and non-protein-bound thiols), phenolic compounds (flavonoids, anthocyanins, and polyphenols), and organic acids were studied in 10-day-old seedlings. Dry matter content and the heavy metal tolerance index were reduced by 42.24 and 52.3%, respectively, in response to Pb treatment. Metal uptake, metal-chelating compounds, phenolic compounds, and organic acids were increased in Pb-treated seedlings as compared to control plants. The treatment of Pb-stressed seedlings with combination of EBL and SA resulted in enhancement of heavy metal tolerance index by 40.07%, water content by 1.84%, and relative water content by 23.45%. The total water- and lipid-soluble antioxidants were enhanced by 21.01 and 2.21%, respectively. In contrast, a significant decline in dry weight, metal uptake, thiol, and polyphenol contents was observed following the application of 24-epibrassinolide and salicylic acid. These observations indicate that Pb treatment has an adverse effect on B. juncea seedlings. However, co-application of 24-epibrassinolide and salicylic acid mitigates the negative effects of Pb, by lowering Pb metal uptake and enhancing the heavy metal tolerance index, water content, relative water content, antioxidative capacities, phenolic content, and organic acid levels.  相似文献   

3.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

4.
We investigated the effects of exogenous application of jasmonic acid (JA) and nitric oxide (NO) on growth, antioxidant metabolism, physio-biochemical attributes and metabolite accumulation, in tomato (Solanum lycopersicum L.) plants exposed to salt stress. Treating the plants with NaCl (200 mM) resulted in considerable growth inhibition in terms of biomass, relative water content, and chlorophyll content, all of which were significantly improved upon application of JA and NO under both normal and NaCl-stress treatments. Salt treatment particularly 200 mM NaCl caused an apparent increase in electrolyte leakage, lipid peroxidation, and hydrogen peroxide production, which were reduced by exogenous application of JA and NO. Salt treatment triggered the induction of antioxidant system by enhancing the activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). Application of JA and NO separately as well as in combination caused a significant improvement in activities of SOD, CAT, APX, and GR activities. JA and NO either applied individually or in combination boosted the flavonoid, proline and glycine betaine synthesis under NaCl treatments. In conclusion, the exogenous application of JA and NO protected tomato plants from NaCl-induced damage by up-regulating the antioxidant metabolism, osmolyte synthesis, and metabolite accumulation.  相似文献   

5.
6.
Low non-freezing temperature is one of the major environmental factors affecting growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas is considered as a sustainable energy plants with great potential for biodiesel production. In this study, chilling shock at 5 °C followed by recovery at 26 °C for 4 h significantly improved survival percentage of J. curcas seedlings under chilling stress at 1 °C. In addition, chilling shock could obviously enhance the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), and the levels of antioxidants ascorbic acid (AsA) and glutathione (GSH), as well as the contents of osmolytes proline and betaine in leaves of seedlings of J. curcas compared with the control without chilling shock. During the process of recovery, GR activity, AsA, GSH, proline and betaine contents sequentially increased, whereas SOD, APX and CAT activities gradually decreased, but they markedly maintained higher activities than those of control. Under chilling stress, activities of SOD, APX, CAT, GR and GPX, and contents of AsA, GSH, proline and betaine, as well as the ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)] in the shocked and non-shock seedlings all dropped, but shocked seedlings sustained significantly higher antioxidant enzyme activity, antioxidant and osmolyte contents, as well as ratio of reduced antioxidants to total antioxidants from beginning to end compared with control. These results indicated that the chilling shock followed by recovery could improve chilling tolerance of seedlings in J. curcas, and antioxidant enzymes and osmolytes play important role in the acquisition of chilling tolerance.  相似文献   

7.
24-Epibrassinolide (EBL) is considered the most probable brassinosteroid (BR) candidate that could be used for practical application in agriculture. EBL-induced stress-protective properties were evaluated in in vitro-grown tomato (Solanum lycopersicum L.) varieties Pusa Ruby (susceptible to nematodes) and PNR-7 (resistant to nematodes) during nematode pathogenesis. Sterilized tomato seeds treated with 10?11, 10?9, or 10?7 M EBL and germinated in vitro were inoculated with second-stage juveniles of Meloidogyne incognita [(Kofoid and White) Chitwood]. Whole plant analyses of morphological and biochemical parameters 7 d after inoculation showed significant improvements in plant growth and development for both varieties and a highly significant reduction in the number of galls in the susceptible variety. Increased specific activities of antioxidative enzymes (catalase, ascorbate peroxidase, glutathione reductase, glutathione peroxidase, guaiacol peroxidase, and superoxide dismutase) were observed in EBL-treated seedlings of both varieties, but increases were higher in the resistant variety. A highly significant increase in antioxidants (ascorbic acid content, total flavonoid content, total glutathione content, and total phenolic content) was observed in EBL-treated Pusa Ruby seedlings, whereas in PNR-7, significant increases were found except for total flavonoid content, which increased non-significantly. Confocal microscopic images showed amelioration of stress in roots of EBL-treated seedlings as indicated by the decrease in level of green fluorescence in them as compared to untreated and nematode-inoculated roots.  相似文献   

8.
以链格孢菌Alternaria alternata和烟草Nicotiana tabacum品种云烟87为试材,研究不同浓度茉莉酸甲酯(MeJA)和水杨酸(SA)处理下,链格孢菌菌丝生长情况以及成熟期烟叶防御酶活性与多酚含量变化,探讨植物生长调节剂对烟草抗链格孢菌的影响。结果表明,1 mmol·L–1 MeJA对链格孢菌的抑制效果最好,抑菌率高达59%以上,其次是3.5 mmol·L–1SA;MeJA和SA对链格孢菌的抑制效果随药剂浓度升高而增强;0.1 mmol·L–1 MeJA和2.5 mmol·L–1 SA能诱导烟草叶片SOD、POD、CAT等防御酶活性,并能降低H2O2活性氧含量,尤其以MeJA诱导效果较好。2种植物生长调节剂处理并接种链格孢菌能诱导提高烟叶多酚代谢相关酶PPO及PAL活性,但对烟草多酚类物质影响较小;成熟烟叶中含量较高的前3种多酚物质是绿原酸、芸香苷、隐绿原酸。  相似文献   

9.
Sun Y  Yin J  Cao H  Li C  Kang L  Ge F 《PloS one》2011,6(5):e19751
Rising atmospheric CO(2) concentrations can affect the induced defense of plants against chewing herbivores but little is known about whether elevated CO(2) can change the induced defense of plants against parasitic nematodes. This study examined the interactions between the root-knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes grown under ambient (390 ppm) and elevated (750 ppm) CO(2) in growth chambers. In a previous study with open-top chambers in the field, we reported that elevated CO(2) increased the number of nematode-induced root galls in a JA-defense-dominated genotype but not in a wild-type or JA-defense-recessive genotype. In the current study, we tested the hypothesis that elevated CO(2) will favor the salicylic acid (SA)-pathway defense but repress the jasmonic acid (JA)-pathway defense of plants against plant-parasitic nematodes. Our data showed that elevated CO(2) reduced the JA-pathway defense against M. incognita in the wild-type and in a genotype in which defense is dominated by the JA pathway (a JA-defense-dominated genotype) but up-regulated the SA-pathway defense in the wild type and in a JA-defense-recessive genotype (jasmonate-deficient mutant). Our results suggest that, in terms of defense genes, secondary metabolites, and volatile organic compounds, induced defense of nematode-infected plants could be affected by elevated CO(2), and that CO(2)-induced changes of plant resistance may lead to genotype-specific responses of plants to nematodes under elevated CO(2). The changes in resistance against nematodes, however, were small relative to those reported for chewing insects.  相似文献   

10.
A combination of mineral nutrients and plant growth regulators should be assessed to improve crop performance under various abiotic stresses. There is a need to include plant growth regulators in fertilization regime of various crops along with essential mineral nutrients, especially when they are irrigated with polluted water with higher levels of heavy metals. The performance of pea was evaluated under cadmium (Cd) stress coupled with potassium (K) and jasmonic acid (JA) supplementation. The Cd stress (50 μM) was applied to soil (sandy loam) grown pea plants as basal dose after a month of sowing. The control and stressed plants were then supplemented with K (5 M), JA (0.5 mM) and their collective application along with control as distilled water. Cd stress showed a marked reduction in growth pattern, however, the collective supplementation sufficiently improved the growth pattern of stressed peas plants as evidenced by improvement in shoot length (cm), root length (cm), number of leaves per plant, leaf area (cm2), plant fresh and dry weight (gm). Potassium application under Cd stress significantly enhanced internodal distance (cm) while the number of seeds per pod and relative water contents remained nonsignificant. The applied treatment (JA + K) under Cd stress prominently improved enzymatic activities, which were measured as nitrate reductase activity (NRA), nitrite reductase activity (NiRA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Cd stress impacted the biochemical profile by enhancing antioxidant capacity (AC), antioxidant activity (AA), total phenols (TP), while reducing total soluble protein (TSP), chlorophyll ‘a’, chlorophyll ‘b’ and carotenoids. The combined application of JA and K under Cd stress enhanced AC, AA, TP, Chl a and b, TSP and carotenoids. The results indicate that foliar application of JA and K efficiently negated the harmful effects of Cd stress on peas.  相似文献   

11.
Abstract

Management of root-knot nematodes (Meloidogyne spp.) is too difficult and is mainly based on chemicals. Synthetic nematicides contaminate the environment and endanger the human health, so scientists have been tried to find a new alternative safe method for nematode control. Activating plant immunity system in integration with biological control seems promising. Here, we tried to control Meloidogyne javanica on tomato plants by simultaneous application of jasmonic acid (JA), as a defence inducer, and Purpureocillium lilacinum (Pl) as a biocontrol agent. A factorial experiment was devised with two main factors each in four levels. The concentration of JA and Pl was 0, 0.5, 1, and 1.5?mM and 0, 103, 106, and 109 spore ml?1 suspension, respectively. Cadusafos was used as positive control. Tomato growth characteristic as well as nematode reproduction traits were evaluated 8 weeks after being grown in a greenhouse. The data were analysed by a custom response surface regression model. Increase in concentration of main factors led to increase in plant growth and decrease in nematode reproduction. JA at 1.5?mM concentration could control nematode the same as cadusafos regardless to fungus concentration. Simultaneous application of JA and Pl reciprocally increase the effect of each factor. The lowest concentration of P. lilacinum and JA for achieving the compromise best plant growth and lowest nematode reproduction were 1.5?mM JA and 40.51?×?106 conidia of P. lilacinum ml?1 suspension.  相似文献   

12.
13.
14.
Heavy metal toxicity is one of the major ecosystem concerns globally in present time and is also responsible for significant threat to agronomic crops. The current work was conducted to investigate the possible ameliorative role of proline in Coriandrum sativum L. seedlings treated with mercury (Hg). The seedlings were exposed to different concentrations of Hg (0, 0.1, 0.3 and 0.5 mM) for 20 days. The effects of pre-sowing treatment with proline were studied on C. sativum seedlings in terms of pigment (chlorophylls, carotenoids and anthocyanins), malondialdehyde (MDA), antioxidant compound (glutathione, total phenolic compounds, ascorbic acid) and osmolytes (proline, glycine betaine). Additionally, activities of antioxidant enzymes, namely catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were also studied. A strong decline of photosynthetic pigment concentrations was observed in leaves of C. sativum under Hg toxicity. Treatment of seeds with proline reduced the loss of photosynthetic pigments, counteract Hg-triggered oxidative stress, likely preserving the functionality of antioxidant apparatus under Hg stress. The increment of total polyphenols and glycine betaine also contributed in ameliorating Hg toxicity, suggesting the use of exogenous proline as a potential method to enhance the plant tolerance against heavy metal stress.  相似文献   

15.

The citrus leafminer (Phyllocnistis citrella Stainton) is a significant pest for Citrus spp. worldwide. Hence, the effectiveness of jasmonic acid (JA) was compared to three pesticides, abamectin, thiamethoxam, and acetamiprid, against P. citrella infesting mandarin (Citrus reticulata L.) and lime (C. aurantifolia L.) seedlings. Mortality rate was significantly different due to JA and other pesticides treatments. Moreover, on the 3rd day after treatment, JA demonstrated the highest reduction percentage of leafminer (77.08 and 33.33%) on mandarin and lime, respectively. By the 10th day after treatment, JA and abamectin displayed 100% reduction in both plant species. Furthermore, the foliar application of JA enhanced the most vegetative characteristics in the treated seedlings, including growth rate (shoot length/root length), fresh and dry weights of shoot and root as well as the number of leaves/seedling. Moreover, soluble protein content was increased significantly under JA treatment in the two Citrus spp. Jasmonic acid showed a good biological activity, which gives a practical reason to recommend it to be integrated in pest management programs as an alternative product for controlling P. citrella.

  相似文献   

16.
Seven-month-old Scots pine seedlings were inoculated with water or culture filtrate (controls), with 10,000, or 20,000 (experiment 1), and with 2,500 (experiment 2) Bursaphelenchus xylophilus B.C. isolate nematodes and maintained under defined experimental conditions. Controls did not develop pine wilt disease over a 2-month period. In experiment 1, less than 50% of the inoculum was recovered from the nematode-inoculated seedlings in the first 48 hours, after which the nematode population of both treatments increased exponentially resulting in pine death and approximately equal populations at 216 hours after inoculation. In the second experiment, plant mortality, which was always preceded by 2-3 days of chlorosis and associated stem vascular necrosis, first occurred 14 days after inoculation. The nematode population increased until about day 40 after inoculation and declined thereafter. Nematodes extracted from the roots 2 weeks after inoculation accounted for ca.15% of the total number of nematodes per pine. The study indicates that the rate of nematode reproduction is a factor in pine wilt disease. However, the lack of a linear correlation between the number of nematodes and the timing of pine mortality suggests that the timing of pine death may also depend on the location of nematode damage to the host tissue.  相似文献   

17.
The effects of treatment with jasmonic acid (JA) of wheat (Triticum aestivum L, cv. Elegia) coleoptiles on the generation of superoxide anion-radical (O 2 ·? ), the activity of extracellular peroxidase, enzymatic and non-enzymatic components of the antioxidant system were studied. During the first hour after the start of coleoptile treatment with 1 μM JA, the generation of O 2 ·? was enhanced and the extracellular peroxidase was activated. During following 23 h, these effects were gradually reduced. JA-enhanced O 2 ·? generation was partially suppressed by coleoptile treatment with the inhibitor of peroxidase salicylhydroxamic acid, the inhibitor of NADPH-oxidase imidazol, and also the calcium chelator EGTA. Under the influence of JA treatment, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and soluble guaiacol peroxidase) in wheat coleoptiles were activated. Treatment with JA improved coleoptile tolerance to damaging heating (10 min at 43°C); it favored the maintenance of the pools of enzymatic and non-enzymatic antioxidants. The inhibitors of NADPH-oxidase and peroxidase, and also calcium chelator reduced a positive JA influence on coleoptile thermotolerance. The role of changes in the pro-/antioxidant balance in plant tissues for the realization of stress-defensive JA effects is discussed.  相似文献   

18.
The foliar response to different herbivores sharing the same hosts is an important topic for the study of plant-insect interactions. Plants evolve local and systemic resistant strategies to cope with herbivores. Many researchers have characterized the mechanisms of leaf responses to insect infestation; however, the fact that roots serve as systemic resistance modulators to leaf herbivores has been widely ignored. Here, we report that tomato (Solanum lycopersicum) plants infected with southern root-knot nematodes (Meloidogyne incognita)—which feed on the roots to form nodules—enhanced leaf defenses against aboveground attackers, specifically, the whitefly (Bemisia tabaci). Our results show that nematode infection reduced the whitefly population abundance because of conferring a stronger SA-dependent defense pathway against whitefly than in tomato plants without nematode infection. Meanwhile, nematode-infected tomato plant also activated the foliar JA-dependent defense pathway at 4 h after whitefly infestation. However, the foliar JA-dependent defense under whitefly infestation alone was suppressed, with the JA content being nearly 30 % lower than that in tomato plants co-infected with nematodes and whiteflies. Furthermore, nematode infection significantly decreased the plant nitrogen concentration in leaves and roots. As a result, nematode infection reduced the number of whiteflies by enhancing foliar SA-dependent defense, activating JA-dependent defense and decreasing nitrogen nutrition. Our results suggest that underground nematode infection significantly enhances the defense ability of tomato plants against whitefly.  相似文献   

19.
The present study was undertaken to test the influence of exogenously applied jasmonic acid (JA) at concentrations of 0.01–100 μM upon the growth and metabolism of the aquatic plant Wolffia arrhiza (Lemnaceae). JA acted in a concentration-dependent manner. JA at 0.1 μM stimulated plant growth and accumulation of cellular components (proteins, monosaccharides, chlorophylls, phaeophytins, and carotenoids). Treatment with JA at 0.1 μM enhanced W. arrhiza viability by the induction of biomass production and increased the level of photosynthetic pigments, monosaccharides, and soluble proteins. Moreover, JA at 0.1 μM activated the enzymatic (catalase, ascorbate peroxidase, NADH peroxidase) and nonenzymatic antioxidant (ascorbate, glutathione) system in W. arrhiza and, therefore, suppressed lipid peroxidation. In contrast, decreases in fresh weight, major photosynthetic pigments, monosaccharides, and soluble protein content were observed in W. arrhiza exposed to 100 μM JA. JA applied at 100 μM also stimulated the formation of lipid peroxides which are responsible for membrane damage. In the presence of 100 μM JA, antioxidant enzyme (catalase, ascorbate peroxidase, NADH peroxidase) activity and ascorbate as well as glutathione content were inhibited. The data support the hypothesis that JA plays an important role in W. arrhiza growth and metabolism, regulating oxidative status by direct influence on the enzymatic as well as nonenzymatic antioxidant machinery.  相似文献   

20.

Salinity is a major environmental stress that limits plant production and portraits a critical challenge to food security in the world. In this research, the impacts of plant growth–promoting bacteria (Pseudomonas RS-198 and Azospirillum brasilense RS-SP7) and foliar application of plant hormones (salicylic acid 1 mM and jasmonic acid 0.5 mM) on alleviating the harmful effects of salt stress in rapeseed plants (Brassica napus cv. okapi) were examined under greenhouse condition. Salt stress diminished rapeseed biomass, leaf area, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and chlorophyll content, while it increased sodium content, endogenous salicylic and jasmonic acids, osmolyte production, H2O2 and O2•− generations, TBARS content, and antioxidant enzyme activities. Plant growth, nutrient content, leaf expansion, osmolyte production, and antioxidant enzyme activities were increased, but oxidative and osmotic stress indicators were decreased by bacteria inoculation + salicylic acid under salt stress. Antioxidant enzyme activities were amplified by jasmonic acid treatments under salt stress, although rapeseed growth was not generally affected by jasmonic acid. Bacterial + hormonal treatments were superior to individual treatments in reducing detrimental effects of salt stress. The best treatment in rectifying rapeseed growth under salt stress was combination of Pseudomonas and salicylic acid. This combination attenuated destructive salinity properties and subsequently amended rapeseed growth via enhancing endogenous salicylic acid content and some essential nutrients such as potassium, phosphorus, and magnesium.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号