首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mobile phone exposure‐related effects on the human electroencephalogram (EEG) have been shown during both waking and sleep states, albeit with slight differences in the frequency affected. This discrepancy, combined with studies that failed to find effects, has led many to conclude that no consistent effects exist. We hypothesised that these differences might partly be due to individual variability in response, and that mobile phone emissions may in fact have large but differential effects on human brain activity. Twenty volunteers from our previous study underwent an adaptation night followed by two experimental nights in which they were randomly exposed to two conditions (Active and Sham), followed by a full‐night sleep episode. The EEG spectral power was increased in the sleep spindle frequency range in the first 30 min of non‐rapid eye movement (non‐REM) sleep following Active exposure. This increase was more prominent in the participants that showed an increase in the original study. These results confirm previous findings of mobile phone‐like emissions affecting the EEG during non‐REM sleep. Importantly, this low‐level effect was also shown to be sensitive to individual variability. Furthermore, this indicates that previous negative results are not strong evidence for a lack of an effect and, given the far‐reaching implications of mobile phone research, we may need to rethink the interpretation of results and the manner in which research is conducted in this field. Bioelectromagnetics 33:86–93, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
To investigate the influence of radiofrequency electromagnetic fields (EMFs) of cellular phone GSM signals on human sleep electroencephalographic (EEG) pattern, all-night polysomnographies of 24 healthy male subjects were recorded, both with and without exposure to a circular polarized EMF (900 MHz, pulsed with a frequency of 217 Hz, pulse width 577 μs, power flux density 0.2 W/m2. Suppression of rapid eye movement (REM) sleep as well as a sleep-inducing effect under field exposure did not reach statistical significance, so that previous results indicating alterations of these sleep parameters could not be replicated. Spectral power analysis also did not reveal any alterations of the EEG rhythms during EMF exposure. The failure to confirm our previous results might be due to dose-dependent effects of the EMF on the human sleep profile. Bioelectromagnetics 19:199–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Neocortical EEG slow wave activity (SWA) in the delta frequency band (0.5–4.0 Hz) is a hallmark of slow wave sleep (SWS) and its power is a function of prior wake duration and an indicator of a sleep need. SWS is considered the most important stage for realization of recovery functions of sleep. Possibility of impact on characteristics of a night sleep by rhythmic (0.8–1.2 Hz) subthreshold electocutaneous stimulation of a hand during SWS is shown: 1st night—adaptation, 2nd night—control, 3d and 4th nights—with stimulation during SWA stages of a SWS. Stimulation caused significant increase in average duration of SWS and EEG SWA power (in 11 of 16 subjects), and also well-being and mood improvement in subjects with lowered emotional tone. It is supposed that the received result is caused by functioning of a hypothetical mechanism directed on maintenance and deepening of SWS and counteracting activating, awakening influences of the afferent stimulation. The results can be of value both for understanding the physiological mechanisms of sleep homeostasis and for development of non-pharmacological therapy of sleep disorders.  相似文献   

4.
The sleep electroencephalogram (EEG) is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8 h sleep opportunity. A candidate gene approach was employed to analyze single-nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 min less slow-wave sleep (SWS) in carriers of the minor allele than in noncarriers, representing a 22% reduction in SWS duration. Moreover, spectral analysis in a subset of participants (n = 37) showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 min (87%) longer latency from sleep onset to REM sleep, compared to noncarriers. These findings suggest that circadian-related genes can modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep.  相似文献   

5.
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003–0.02 Hz), neurogenic VLFOs (0.02–0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04–0.15 Hz), and total LFOs (0.003–0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.  相似文献   

6.
In two previous studies we demonstrated that radiofrequency electromagnetic fields (RF EMF) similar to those emitted by digital radiotelephone handsets affect brain physiology of healthy young subjects exposed to RF EMF (900 MHz; spatial peak specific absorption rate [SAR] 1 W/kg) either during sleep or during the waking period preceding sleep. In the first experiment, subjects were exposed intermittently during an 8 h nighttime sleep episode and in the second experiment, unilaterally for 30 min prior to a 3 h daytime sleep episode. Here we report an extended analysis of the two studies as well as the detailed dosimetry of the brain areas, including the assessment of the exposure variability and uncertainties. The latter enabled a more in depth analysis and discussion of the findings. Compared to the control condition with sham exposure, spectral power of the non-rapid eye movement sleep electroencephalogram (EEG) was initially increased in the 9-14 Hz range in both experiments. No topographical differences with respect to the effect of RF EMF exposure were observed in the two experiments. Even unilateral exposure during waking induced a similar effect in both hemispheres. Exposure during sleep reduced waking after sleep onset and affected heart rate variability. Exposure prior to sleep reduced heart rate during waking and stage 1 sleep. The lack of asymmetries in the effects on sleep EEG, independent of bi- or unilateral exposure of the cortex, may indicate involvement of subcortical bilateral projections to the cortex in the generation of brain function changes, especially since the exposure of the thalamus was similar in both experiments (approx. 0.1 W/kg).  相似文献   

7.
Use of the third generation mobile phone system is increasing worldwide. This is the first study to investigate the effects of the third generation system on regional cerebral blood flow (rCBF) in humans. We compared effects of the electromagnetic field (EMF) emitted from the Wideband Code Division Multiple Access (W‐CDMA) cellular system versus sham control exposure on rCBF in humans. Nine healthy male volunteers participated in this study. Positron emission tomography (PET) scans were obtained before, during, and after unilateral 30 min EMF exposure. The subtraction analysis revealed no significant rCBF changes caused by the EMF conditions compared with the sham exposure, suggesting that EMF emitted by a third generation mobile phone does not affect rCBF in humans. Bioelectromagnetics 30:536–544, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone‐like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event‐related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double‐blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency‐deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Bioelectromagnetics 34:31–42, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A recent study raised concern about increase of resting blood pressure after a 35 min exposure to the radiofrequency (RF) field emitted by a 900 MHz cellular phone. In this randomized, double blind, placebo controlled crossover trial, 32 healthy subjects were submitted to 900 MHz (2 W), 1800 MHz (1 W) cellular phone exposure, and to sham exposure in separate sessions. Arterial blood pressure (arm cuff method) and heart rate were measured during and after the 35 min RF and sham exposure sessions. We evaluated cardiovascular responses in terms of blood pressure and heart rate during controlled breathing, spontaneous breathing, head-up tilt table test, Valsalva manoeuvre and deep breathing test. Arterial blood pressure and heart rate did not change significantly during or after the 35 min RF exposures at 900 MHz or 1800 MHz, compared to sham exposure. The results of this study indicate that exposure to a cellular phone, using 900 MHz or 1800 MHz with maximal allowed antenna powers, does not acutely change arterial blood pressure and heart rate.  相似文献   

10.
The effects of the mobile phone (MP) electromagnetic fields on electroencephalography (EEG) and event-related potentials (ERP) were examined. With regard to the reported effects of MP on sleep, 22 patients with narcolepsy-cataplexy were exposed or sham exposed for 45 min to the MP (900 MHz, specific absorption rate 0.06 W/kg) placed close to the right ear in a double blind study. There were no changes of the EEG recorded after the MP exposure. A subgroup of 17 patients was studied on visual ERP recorded during the MP exposure. Using an adapted "odd-ball" paradigm, each patient was instructed to strike a key whenever rare target stimuli were presented. There were three variants of target stimuli (horizontal stripes in (i) left, (ii) right hemifields or (iii) whole field of the screen). The exposure enhanced the positivity of the ERP endogenous complex solely in response to target stimuli in the right hemifield of the screen (P < 0.01). The reaction time was shortened by 20 ms in response to all target stimuli (P < 0.05). In conclusion, the electromagnetic field of MP may suppress the excessive sleepiness and improve performance while solving a monotonous cognitive task requiring sustained attention and vigilance.  相似文献   

11.
The present study investigated the effects of 902.4 MHz Global System for Mobile Communications (GSM) mobile phone radiation on cerebral blood flow using positron emission tomography (PET) with the 15O‐water tracer. Fifteen young, healthy, right‐handed male subjects were exposed to phone radiation from three different locations (left ear, right ear, forehead) and to sham exposure to test for possible exposure effects on brain regions close to the exposure source. Whole‐brain [15O]H2O–PET images were acquired 12 times, 3 for each condition, in a counterbalanced order. Subjects were exposed for 5 min in each scan while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. The exposure induced a slight temperature rise in the ear canals but did not affect brain hemodynamics and task performance. The results provided no evidence for acute effects of short‐term mobile phone radiation on cerebral blood flow. Bioelectromagnetics 33:247–256, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The present study investigates the effects of a weak (+/-200 microT(pk)), pulsed, extremely low frequency magnetic field (ELF MF) upon the human electroencephalogram (EEG). We have previously determined that exposure to pulsed ELF MFs can affect the EEG, notably the alpha frequency (8-13 Hz) over the occipital-parietal region of the scalp. In the present study, subjects (n = 32) were exposed to two different pulsed MF sequences (1 and 2, used previously) that differed in presentation rate, in order to examine the effects upon the alpha frequency of the human EEG. Results suggest that compared to sham exposure, alpha activity was lowered over the occipital-parietal regions of the brain during exposure to Sequence 1, while alpha activity over the same regions was higher after Sequence 2 exposure. These effects occurred after approximately 5 min of pulsed MF exposure. The results also suggest that a previous exposure to the pulsed MF sequence determined subjects' responses in the present experiment. This study supports our previous observation of EEG changes after 5 min pulsed ELF MF exposure. The results of this study are also consistent with existing EEG experiments of ELF MF and mobile phone effects upon the brain.  相似文献   

13.
Respiratory long-term facilitation (LTF) is a long-lasting (>1 h) augmentation of respiratory motor output that occurs even after cessation of hypoxic stimuli, is serotonin-dependent, and is thought to prevent sleep-disordered breathing such as sleep apnea. Raphe nuclei, which modulate several physiological functions through serotonin, receive dense projections from orexin-containing neurons in the hypothalamus. We examined possible contributions of orexin to ventilatory LTF by measuring respiration in freely moving prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates before, during, and after exposure to intermittent hypoxia (IH; 5 x 5 min at 10% O2), sustained hypoxia (SH; 25 min at 10% O2), or sham stimulation. Respiratory data during quiet wakefulness (QW), slow wave sleep (SWS), and rapid-eye-movement sleep were separately calculated. Baseline ventilation before hypoxic stimulation and acute responses during stimulation did not differ between the ORX-KO and WT mice, although ventilation depended on vigilance state. Whereas the WT showed augmented minute ventilation (by 20.0 +/- 4.5% during QW and 26.5 +/- 5.3% during SWS; n = 8) for 2 h following IH, ORX-KO showed no significant increase (by -3.1 +/- 4.6% during QW and 0.3 +/- 5.2% during SWS; n = 8). Both genotypes showed no LTF after SH or sham stimulation. Sleep apnea indexes did not change following IH, even when LTF appeared in the WT mice. We conclude that LTF occurs during both sleep and wake periods, that orexin is necessary for eliciting LTF, and that LTF cannot prevent sleep apnea, at least in mice.  相似文献   

14.
A recent study reported the results of an exploratory study of alterations of the quantitative sleep profile due to the effects of a digital mobile radio telephone. Rapid eye movement (REM) was suppressed, and the spectral power density in the 8–13 Hz frequency range during REM sleep was altered. The aim of the present study was to illuminate the influence of digital mobile radio telephone on the awake electroencephalogram (EEG) of healthy subjects. For this purpose, we investigated 34 male subjects in a single-blind cross-over design experiment by measuring spontaneous EEGs under closed-eyes condition from scalp positions C3 and C4 and comparing the effects of an active (0.05 mW/cm2) and an inactive digital mobile radio telephone (GSM) system. During exposure of nearly 3.5 min to the 900 MHz electromagnetic field pulsed at a frequency of 217 Hz and with a pulse width of 580 μs, we could not detect any difference in the awake EEGs in terms of spectral power density measures. Bioelectromagnetics 18:172–176, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Middle latency responses (MLRs) in the 10–100 msec latency range, evoked by click stimuli, were studied in 14 adult volunteer subjects during sleep-wakefulness to determine whether such changes in state were reflected by any MLR component. Evoked potentials were collected in 500 trial averages during continuos presentation of 1/sec clicks during initial awake recordings and thereafter during a 2 h afternoon nap or all-night sleep session. Continuously recorded EEG, EOG and EMG were scored for wakefulness, stages 2–4 of slow wave sleep (SWS), and rapid eye movement (REM) sleep during each evoked potential epoch. The major components included in this study and their latency ranges, as determined by peak latency measurements from the awake records, were: ABR V, 5–8 msec, Pa, 30–40 msec, Nb, 45–55 msec, and P1, 55–80 msec. In agreement with previous reports, ABR V and Pa showed no amplitude changes from wakefulness to either SWS or REM. Not previously reported, however, was the dramatic decrease and disappearance of P1 during SWS and its reappearance during REM to an amplitude similar to that during wakefulness. This unique linkage between a particular evoked potential component and sleep-wakefulness indicates that its generator system must be functionally related to states of arousal. Relevant data from the cat model suggest that the generator substrate for P1 may be within the ascending reticular activating system.  相似文献   

16.
Continuing evidence suggests that extremely low frequency magnetic fields (ELF MFs) can affect animal and human behavior. We have previously demonstrated that after a 15 min exposure to a pulsed ELF MF, with most power at frequencies between 0 and 500 Hz, human brain electrical activity is affected as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here, we report that a pulsed ELF MF affects the human EEG during the exposure period. Twenty subjects (10 males; 10 females) received both a magnetic field and a sham session of 15 min in a counterbalanced design. Analysis of variance (ANOVA) revealed that alpha activity was significantly lower over the occipital electrodes (O1, Oz, O2) [F(1,16) = 5.376, P < .01, eta2 = 0.418] after the first 5 min of magnetic field exposure and was found to be related to the order of exposure (MF-sham vs. sham-MF). This decrease in alpha activity was no longer significant in the 1st min post-exposure, compared to sham (P > .05). This study is among the first to assess EEG frequency changes during a weak (+/-200 microTpk), pulsed ELF MF exposure.  相似文献   

17.
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow‐wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow‐oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high‐order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow‐oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp‐wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7–14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow‐oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow‐oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region—the caudolateral nidopallium (NCL)—involved in performing high‐order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra‐hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow‐oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow‐oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups.  相似文献   

18.
We investigated the effect of mobile phone use on the auditory sensory memory in children. Auditory event‐related potentials (ERPs), P1, N2, mismatch negativity (MMN), and P3a, were recorded from 17 children, aged 11–12 years, in the recently developed multi‐feature paradigm. This paradigm allows one to determine the neural change‐detection profile consisting of several different types of acoustic changes. During the recording, an ordinary GSM (Global System for Mobile Communications) mobile phone emitting 902 MHz (pulsed at 217 Hz) electromagnetic field (EMF) was placed on the ear, over the left or right temporal area (SAR1g = 1.14 W/kg, SAR10g = 0.82 W/kg, peak value = 1.21 W/kg). The EMF was either on or off in a single‐blind manner. We found that a short exposure (two 6 min blocks for each side) to mobile phone EMF has no statistically significant effects on the neural change‐detection profile measured with the MMN. Furthermore, the multi‐feature paradigm was shown to be well suited for studies of perception accuracy and sensory memory in children. However, it should be noted that the present study only had sufficient statistical power to detect a large effect size. Bioelectromagnetics 31:191–199, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

20.
Given the widespread use of the cellular phone today, investigation of potential biological effects of radiofrequency (RF) fields has become increasingly important. In particular, much research has been conducted on RF effects on brain function. To examine any biological effects on the central nervous system (CNS) induced by 1950 MHz modulation signals, which are controlled by the International Mobile Telecommunication‐2000 (IMT‐2000) cellular system, we investigated the effect of RF fields on microglial cells in the brain. We assessed functional changes in microglial cells by examining changes in immune reaction‐related molecule expression and cytokine production after exposure to a 1950 MHz Wideband Code Division Multiple Access (W‐CDMA) RF field, at specific absorption rates (SARs) of 0.2, 0.8, and 2.0 W/kg. Primary microglial cell cultures prepared from neonatal rats were subjected to an RF or sham field for 2 h. Assay samples obtained 24 and 72 h after exposure were processed in a blind manner. Results showed that the percentage of cells positive for major histocompatibility complex (MHC) class II, which is the most common marker for activated microglial cells, was similar between cells exposed to W‐CDMA radiation and sham‐exposed controls. No statistically significant differences were observed between any of the RF field exposure groups and the sham‐exposed controls in percentage of MHC class II positive cells. Further, no remarkable differences in the production of tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), and interleukin‐6 (IL‐6) were observed between the test groups exposed to W‐CDMA signal and the sham‐exposed negative controls. These findings suggest that exposure to RF fields up to 2 W/kg does not activate microglial cells in vitro. Bioelectromagnetics 31:104–112, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号