首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasingly high cell density, high product titer cell cultures containing mammalian cells are being used for the production of recombinant proteins. These high productivity cultures are placing a larger burden on traditional downstream clarification and purification operations due to higher product and impurity levels. Controlled flocculation and precipitation of mammalian cell culture suspensions by acidification or using polymeric flocculants have been employed to enhance clarification throughput and downstream filtration operations. While flocculation is quite effective in agglomerating cell debris and process related impurities such as (host cell) proteins and DNA, the resulting suspension is generally not easily separable solely using conventional depth filtration techniques. As a result, centrifugation is often used for clarification of cells and cell debris before filtration, which can limit process configurations and flexibility due to the investment and fixed nature of a centrifuge. To address this challenge, novel depth filter designs were designed which results in improved primary and secondary direct depth filtration of flocculated high cell density mammalian cell cultures systems feeds, thereby providing single‐use clarification solution. A framework is presented here for optimizing the particle size distribution of the mammalian cell culture systems with the pore size distribution of the gradient depth filter using various pre‐treatment conditions resulting in increased depth filter media utilization and improved clarification capacity. Feed conditions were optimized either by acidification or by polymer flocculation which resulted in the increased average feed particle‐size and improvements in throughput with improved depth filters for several mammalian systems. Biotechnol. Bioeng. 2013; 110: 1964–1972. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Multi‐factorial experimentation is essential in understanding the link between mammalian cell culture conditions and the glycoprotein product of any biomanufacturing process. This understanding is increasingly demanded as bioprocess development is influenced by the Quality by Design paradigm. We have developed a system that allows hundreds of micro‐bioreactors to be run in parallel under controlled conditions, enabling factorial experiments of much larger scope than is possible with traditional systems. A high‐throughput analytics workflow was also developed using commercially available instruments to obtain product quality information for each cell culture condition. The micro‐bioreactor system was tested by executing a factorial experiment varying four process parameters: pH, dissolved oxygen, feed supplement rate, and reduced glutathione level. A total of 180 micro‐bioreactors were run for 2 weeks during this DOE experiment to assess this scaled down micro‐bioreactor system as a high‐throughput tool for process development. Online measurements of pH, dissolved oxygen, and optical density were complemented by offline measurements of glucose, viability, titer, and product quality. Model accuracy was assessed by regressing the micro‐bioreactor results with those obtained in conventional 3 L bioreactors. Excellent agreement was observed between the micro‐bioreactor and the bench‐top bioreactor. The micro‐bioreactor results were further analyzed to link parameter manipulations to process outcomes via leverage plots, and to examine the interactions between process parameters. The results show that feed supplement rate has a significant effect (P < 0.05) on all performance metrics with higher feed rates resulting in greater cell mass and product titer. Culture pH impacted terminal integrated viable cell concentration, titer and intact immunoglobulin G titer, with better results obtained at the lower pH set point. The results demonstrate that a micro‐scale system can be an excellent model of larger scale systems, while providing data sets broader and deeper than are available by traditional methods. Biotechnol. Bioeng. 2009; 104: 1107–1120. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
High cell density, high product titer mammalian cell culture is the new paradigm for production of recombinant proteins. While the typical motivation is to get a high product titer, additional undesirable outcomes often include an increase in percentage solids in the cell culture fluid (cellular debris and sub-micron colloids), thereby offering new challenges to downstream processing. This article focuses on scouting and comparison of different approaches used for clarification of cell culture fluid. The approaches include centrifugation followed by depth filtration, direct depth filtration without centrifugation and feed pretreatment with use of specially designed density gradient filtration to improve efficiency of clarification and removal of process contaminants from feed stream. The work also evaluates impact of three different pretreatment approaches, namely pH adjustment to acidic condition, metal cation (calcium phosphate) flocculation, and polycationic polymer flocculation (using polymer-I and polymer-II). The results obtained indicate that the use of pretreatment significantly improves the clarification efficiency of depth filtration. Pretreatment options like polycationic polymer-I based flocculation resulted in a >5 fold reduction in filter area requirement as well as >6 fold reduction in HCDNA while retaining acceptable recovery of the IgG (>98%). Thus, pretreatment offers a significant reduction in the depth filtration footprint (~5–6 fold decrease in filter area requirement). However, one must take into consideration the process development time required, capital cost, consumable cost, cost of the pretreatment chemical, cost of testing to demonstrate clearance of treatment agent, ease of scale-ability, and process robustness when finalizing the optimal clarification approach.  相似文献   

4.
Recent progress in mammalian cell culture process has resulted in significantly increased product titers, but also a substantial increase in process- and product-related impurities. Due to the diverse physicochemical properties of these impurities, there is constant need for new technologies that offer higher productivity and improved economics without sacrificing the process robustness required to meet final drug substance specifications. Here, we examined the use of new synthetic adsorptive hybrid filters (AHF) modified with the high binding capacity of quaternary amine (Emphaze? AEX) and salt-tolerant biomimetic (Emphaze? ST-AEX) ligands for clearance of process-related impurities like host cell protein (HCP), residual DNA, and virus. The potential to remove soluble aggregates was also examined. Our aim was to develop a mechanistic understanding of the interactions governing adsorptive removal of impurities during filtration by evaluating the effect of various filter types, feed streams, and process conditions on impurity removal. The ionic capacity of these filters was measured and correlated with their ability to remove impurities for multiple molecules. The ionic capacity of AHF significantly exceeded that of traditional adsorptive depth filters (ADF) by 40% for the Emphaze? AEX and by 700% for the Emphaze? ST-AEX, providing substantially higher reduction of soluble anionic impurities, including DNA, HCPs and model virus. Nevertheless, we determined that ADF with filter aid provided additional hydrophobic functionality that resulted in removal of higher molecular weight species than AHF. Implementing AHF demonstrated improved process-related impurity removal and viral clearance after Protein A chromatography and enabled a two-step purification process. The consequences of enhanced process performance are far reaching because it allows the downstream polishing train to be restructured and simplified, and chromatographic purity standards to be met with a reduced number of chromatographic steps.  相似文献   

5.
The non-destructive removal of hybridoma cells from fermentation broth with an improved disc stack centrifuge (CSA1, Westfalia Separator AG, Oelde, Germany) was investigated. The centrifuge was equipped with a hydrohermetic feed system, which allowed a gentle, shearless acceleration of the cells inside the bowl. No significant cell damage was observed during the separation of hybridoma cells from repeated batch fermentation in 100 liter scale. In the clarified liquid phase there was no increase in Lactate-Dehydrogenase (LDH) activity. Consequently, there was no increased exposure of the product to intracellular components.Due to continuous operation with a periodic and automatic discharge of sediment, a high throughput was achieved without any considerable loss of product. The clarification for mammalian cells was in the range of 99% to 99.9%, depending on the operating conditions. The content of cell debris and other small particles decreased about 30 to 50%, depending on the particle load in the feed stream. The centrifuge was fully contained; cleaning and sterilizing in place possible. Therefore, the decice could be integrated easily into the fermentation process.  相似文献   

6.
High throughput screening (HTS) of chromatography resins can accelerate downstream process development by rapidly providing information on product and impurity partitioning over a wide range of experimental conditions. In addition to the removal of typical product and process‐related impurities, chromatography steps are also used to remove potential adventitious viral contaminants and non‐infectious retrovirus‐like particles expressed by rodent cell lines used for production. This article evaluates the feasibility of using HTS in a 96‐well batch‐binding format to study removal of the model retrovirus xenotropic murine leukemia virus (xMuLV) from product streams. Two resins were examined: the anion exchange resin Q Sepharose Fast Flow? (QSFF) and Capto adhere?, a mixed mode resin. QSFF batch‐binding HTS data was generated using two mAbs at various pHs, NaCl concentrations, and levels of impurities. Comparison of HTS data to that generated using the column format showed good agreement with respect to virus retentation at different pHs, NaCl concentrations and impurity levels. Results indicate that NaCl concentration and impurity level, but not pH, are key parameters that can impact xMuLV binding to both resins. Binding of xMuLV to Capto adhere appeared to tolerate higher levels of NaCl and impurity than QSFF, and showed some product‐specific impact on binding that was not observed with QSFF. Overall, the results demonstrate that the 96‐well batch‐binding HTS technique can be an effective tool for rapidly defining conditions for robust virus clearance on chromatographic resins. Biotechnol. Bioeng. 2013; 110: 1984–1994. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ~8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Current industry practices for large‐scale mammalian cell cultures typically employ a standard platform fed‐batch process with fixed volume bolus feeding. Although widely used, these processes are unable to respond to actual nutrient consumption demands from the culture, which can result in accumulation of by‐products and depletion of certain nutrients. This work demonstrates the application of a fully automated cell culture control, monitoring, and data processing system to achieve significant productivity improvement via dynamic feeding and media optimization. Two distinct feeding algorithms were used to dynamically alter feed rates. The first method is based upon on‐line capacitance measurements where cultures were fed based on growth and nutrient consumption rates estimated from integrated capacitance. The second method is based upon automated glucose measurements obtained from the Nova Bioprofile FLEX® autosampler where cultures were fed to maintain a target glucose level which in turn maintained other nutrients based on a stoichiometric ratio. All of the calculations were done automatically through in‐house integration with a Delta V process control system. Through both media and feed strategy optimization, a titer increase from the original platform titer of 5 to 6.3 g/L was achieved for cell line A, and a substantial titer increase of 4 to over 9 g/L was achieved for cell line B with comparable product quality. Glucose was found to be the best feed indicator, but not all cell lines benefited from dynamic feeding and optimized feed media was critical to process improvement. Our work demonstrated that dynamic feeding has the ability to automatically adjust feed rates according to culture behavior, and that the advantage can be best realized during early and rapid process development stages where different cell lines or large changes in culture conditions might lead to dramatically different nutrient demands. Biotechnol. Bioeng. 2013; 110: 191–205. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Most biopharmaceutical drugs, especially monoclonal antibodies (mAbs), bispecific antibodies (BsAbs) and Fc‐fusion proteins, are expressed using Chinese Hamster Ovary (CHO) cell lines. CHO cells typically yield high product titers and high product quality. Unfortunately, CHO cell lines also generate high molecular weight (HMW) aggregates of the desired product during cell culture along with CHO host cell protein (HCP) and CHO DNA. These immunogenic species, co‐purified during Protein A purification, must be removed in a multi‐step purification process. Our colleagues have reported the use of a novel polymer‐mediated flocculation step to simultaneously reduce HMW, HCP and DNA from stable CHO cell cultures prior to Protein A purification. The objective of this study was to evaluate this novel “smart polymer” (SmP) in a high throughput antibody discovery workflow using transiently transfected CHO cultures. SmP treatment of 19 different molecules from four distinct molecular categories (human mAbs, murine mAbs, BsAbs and Fabs) with 0.1% SmP and 25 mM stimulus resulted in minimal loss of monomeric protein. Treatment with SmP also demonstrated a variable, concentration‐dependent removal of HMW aggregates after Protein A purification. SmP treatment also effectively reduced HCP levels at each step of mAb purification with final HCP levels being several fold lower than the untreated control. Interestingly, SmP treatment was able to significantly reduce high concentrations of artificially spiked levels of endotoxin in the cultures. In summary, adding a simple flocculation step to our existing transient CHO process reduced the downstream purification burden to remove impurities and improved final product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1393–1400, 2017  相似文献   

10.
Expression systems capable of growing to high cell densities are now readily available and are popular due to the benefits of increased product concentration. However, such high solids density cultures pose a major challenge for bioprocess engineers as choosing the right separation equipment and operating it at optimal conditions is crucial for efficient recovery. This study proposes a methodology for the rapid determination of suitable operating conditions for the centrifugal recovery of high cell density fermentation broths. An ultra scale-down (USD) approach for the prediction of clarification and dewatering levels achieved in a range of typical high-speed centrifuges is presented. Together with a visualisation tool, a Window of Operation, this provides for the rapid analysis of separation performance and evaluation of the available operating conditions, as an aid in the selection of the centrifuge equipment most appropriate for a given process duty. A case study examining centrifuge selection for the processing of a high cell density Pichia pastoris culture demonstrates the method. The study examines semi-continuous disc-stack centrifuges and batch-operated machines such as multi-chamber bowls and Carr Powerfuges. Performance is assessed based on the variables of clarification, dewatering and product yield. Inclusion of limits imposed by the centrifuge type and design, and operation itself, serve to constrain the process and to define the Windows of Operation. The insight gained from the case study provides a useful indication of the utility of the methodology presented and illustrates the challenges of centrifuge selection for the demanding case of high solids concentration feed streams.  相似文献   

11.
Significant and continual improvements in upstream processing for biologics have resulted in challenges for downstream processing, both primary recovery and purification. Given the high cell densities achievable in both microbial and mammalian cell culture processes, primary recovery can be a significant bottleneck in both clinical and commercial manufacturing. The combination of increased product titer and low viability leads to significant relative increases in the levels of process impurities such as lipids, intracellular proteins and nucleic acid versus the product. In addition, cell culture media components such as soy and yeast hydrolysates have been widely applied to achieve the cell culture densities needed for higher titers. Many of the process impurities can be negatively charged at harvest pH and can form colloids during the cell culture and harvest processes. The wide size distribution of these particles and the potential for additional particles to be generated by shear forces within a centrifuge may result in insufficient clarification to prevent fouling of subsequent filters. The other residual process impurities can lead to precipitation and increased turbidity during processing and even interference with the performance of the capturing chromatographic step. Primary recovery also poses significant challenges owing to the necessity to execute in an expedient manner to minimize both product degradation and bioburden concerns. Both microfiltration and centrifugation coupled with depth filtration have been employed successfully as primary recovery processing steps. Advances in the design and application of membrane technology for microfiltration and dead-end filtration have contributed to significant improvements in process performance and integration, in some cases allowing for a combination of multiple unit operations in a given step. Although these advances have increased productivity and reliability, the net result is that optimization of primary recovery processes has become substantially more complicated. Ironically, the application of classical chemical engineering approaches to overcome issues in primary recovery and purification (e.g., turbidity and trace impurity removal) are just recently gaining attention. Some of these techniques (e.g., membrane cascades, pretreatment, precipitation, and the use of affinity tags) are now seen almost as disruptive technologies. This paper will review the current and potential future state of research on primary recovery, including relevant papers presented at the 234th American Chemical Society (ACS) National Meeting in Boston.  相似文献   

12.
While expanded-bed adsorption (EBA) units have been used to recover proteins from whole cell cultures, the development of a more efficient, on-line process could streamline the traditional multistep process. This study implements a bench-scale on-line purification system in which whole cell cultures are loaded directly into a chromatography column to capture a monoclonal antibody (mAb) in a single step. The on-line purification system used here integrates a stirred-tank reactor (STR) and an EBA unit into a new hybrid (STR-EBA) system. To conduct this work, first, column and buffer conditions were optimized to capture immunoglobulin G from a hybridoma cell culture. A high cell removal (>95%) was achieved in part by removing the top flow distributor and mesh. Then, the 95% extent of removal was sustained for four successive cycles, each using PBS. With 20 mM phosphate buffer, however, the removal decreased from 95% to 75% stepwise. Next, the operational constraints of the EBA system were determined for the hybridoma cell culture, focusing on the effects of cell viability and density on cell removal. This study shows that the cell removal was not significantly different in the range of 80% to 0% viability. Cell density was also varied between 1 x 10(6) and 1 x 10(8) cells/mL. From 0.1 to 6 x 10(7) cells/mL, cell retention in the column was less than 5% and product recovery remained high, approximately 95%. After characterizing the working conditions of the EBA system, on-line purification was performed. With 1.1 L of culture containing 3 x 10(6) cells/mL and 100 mg/L of IgG, repeated-batch cultures were implemented. Half of the culture volume (550 mL) was directly sent to the EBA system every day, for 11 days, and the same amount of fresh medium was fed into the STR. During on-line purification, productivity was 58 mg of IgG/cycle (day) and purity was greater than 95%. Simple batch culture alone produced 17 mg of IgG/day. This result suggests that the on-line STR-EBA system can achieve higher and faster production compared with STR batch and off-line EBA purification. Overall, the STR-EBA system with repeated-batch mode was an effective and flexible system for bench-scale mAb production.  相似文献   

13.
Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett‐Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow‐up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes. In depth analysis of the capture chromatography purification of harvested cell culture fluid yielded significant effects of upstream process parameters on host cell protein abundance and behavior. A variety of methods were used to characterize the antibody both after purification and buffer formulation. This analysis provided insight in to the significant impacts of upstream process parameters on aggregate formation, impurities, and protein structure. This report highlights the utility of linkage studies in identifying how changes in upstream parameters can impact downstream critical quality attributes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:163–170, 2017  相似文献   

14.
《MABS-AUSTIN》2013,5(2):413-427
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.  相似文献   

15.
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.  相似文献   

16.
A high‐throughput DoE approach performed in a 96‐deepwell plate system was used to explore the impact of media and feed components on main quality attributes of a monoclonal antibody. Six CHO‐S derived clonal cell lines expressing the same monoclonal antibody were tested in two different cell culture media with six components added at three different levels. The resulting 384 culture conditions including controls were simultaneously tested in fed‐batch conditions, and process performance such as viable cell density, viability, and product titer were monitored. At the end of the culture, supernatants from each condition were purified and the product was analyzed for N‐glycan profiles, charge variant distribution, aggregates, and low molecular weight forms. The screening described here provided highly valuable insights into the factors and combination of factors that can be used to modulate the quality attributes of a molecule. The approach also revealed specific intrinsic differences of the selected clonal cell lines ‐ some cell lines were very responsive in terms of changes in performance or quality attributes, whereas others were less affected by the factors tested in this study. Moreover, it indicated to what extent the attributes can be impacted within the selected experimental design space. The outcome correlated well with confirmations performed in larger cell culture volumes such as small‐scale bioreactors. Being fast and resource effective, this integrated high‐throughput approach can provide information which is particularly useful during early stage cell culture development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:571–583, 2014  相似文献   

17.
Expanded bed adsorption (EBA) chromatography was investigated for clarification and capture of high‐concentration refold pools of Escherichia coli‐based therapeutics. Refolding of denatured inclusion bodies (IBs) at high protein concentration significantly improved product throughput; however, direct filtration of the refold materials became very challenging because of high content of protein precipitates formed during refolding. In addition, irreversible protein precipitation caused by high local concentration was encountered in packed bed capture during cation exchange chromatography elution, which limited column loading capacity and capture step productivity. In this study, the two issues are addressed in one unit operation by using EBA. Specifically, EBA can handle feed streams with significant amount of particles and precipitates, which eliminated the need for refold pool clarification through filtration. The relatively broad EBA elution profile is particularly suitable for proteins of low solubility and can effectively avoid product loss previously associated with on‐column precipitation during capture. As the EBA resin (RHOBUST® FastLine SP IEX) used here has unique properties, it can be operated at high linear velocity (800–1,600 cm/h), while achieving a selectivity and impurity clearance largely comparable to the packed bed resin of the same ligand chemistry (SP Sepharose FF). Furthermore, the filtration of the EBA elution pool is easily manageable within facility capability. Overall, this study demonstrates that the EBA process helps debottleneck the purification of high‐turbidity refold pools by removing precipitates and concurrently capturing the product, which can be applied to other E. coli‐based therapeutics that also requires refolding of IBs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:113–123, 2014  相似文献   

18.
Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges. Biotechnol. Bioeng. 2013;110: 2928–2937. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

19.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

20.
The increased cell density and product titer in biomanufacturing have led to greater use of depth filtration as part of the initial clarification of cell culture fluid, either as a stand-alone unit operation or after centrifugation. Several recent studies have shown that depth filters can also reduce the concentration of smaller impurities like host cell proteins (HCP) and DNA, decreasing the burden on subsequent chromatographic operations. The objective of this study was to evaluate the HCP removal properties of the Pall PDH4 depth filter media, a model depth filter containing diatomaceous earth, cellulose fibers, and a binder. Experiments were performed with both cell culture fluid (CCF) and a series of model proteins with defined pI, molecular weight, and hydrophobicity chosen to match the range of typical HCP. The location of adsorbed (fluorescently labeled) proteins within the depth filters was determined using confocal scanning laser microscopy. Protein binding was greater for proteins that were positively charged and more hydrophobic, consistent with adsorption to the negatively charged diatomaceous earth. The lowest degree of binding was seen with proteins near their pI, which were poorly removed by this filter. These results provide new mechanistic insights into the factors governing the filter capacity and performance characteristics of depth filters containing diatomaceous earth that are widely used in the clarification of CCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号